No CrossRef data available.
Published online by Cambridge University Press: 13 January 2025
Let be a commutative ring containing a primitive $l'$th root $\varepsilon $ of $1$. The infinitesimal q-Schur algebras over form an ascending chain of subalgebras of the q-Schur algebra , which are useful in studying representations of the Frobenius kernel of the associated quantum linear group. Let be the quantized enveloping algebra of $\mathfrak {gl}_n$ over . There is a natural surjective algebra homomorphism $\zeta _{d}$ from to . The map $\zeta _{d}$ restricts to a surjective algebra homomorphism $\zeta _{d,r}$ from to , where is a certain Hopf subalgebra of , which is closely related to Frobenius–Lusztig kernels of . We give the extra defining relations needed to define the infinitesimal q-Schur algebra as a quotient of . The map $\zeta _{d,r}$ induces a surjective algebra homomorphism , where is the modified quantum algebra associated with . We also give a generating set for the kernel of $\dot {\zeta }_{d,r}$. These results can be used to give a classification of irreducible -modules over a field of characteristic p.