Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-27T07:29:10.301Z Has data issue: false hasContentIssue false

Capacities of Borelian Sets and the Continuity of Potentials

Published online by Cambridge University Press:  22 January 2016

Masanori Kishi*
Affiliation:
Mathematical Institute, Nagoya University
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

One of the most important problems in the potential theory is the one of capacitability, that is, whether the inner capacity of an arbitrary borelian subset B is equal to the outer capacity of B. As for the capacities induced by the Newtonian potentials and other classical potentials, Choquet [5] has shown that every borelian and, more generally, every analytic set are capacitable. He goes on as follows : first he shows that, for the Newtonian capacity f, the inequality of strong subadditivity holds, that is,

and then, using this inequality, he shows that the outer capacity f* has the analogous property to one of the outer measure, more precisely, if an increasing sequence {An} of arbitrary subsets converges to A, then f*(A) = limf*(An)- This property plays an important role in his proof.

Type
Research Article
Copyright
Copyright © Editorial Board of Nagoya Mathematical Journal 1957

References

[ 1 ] Benzécri, J. P.: Théorie des capacites, Seminaire Bourbaki, (1955).Google Scholar
[ 2 ] Bourbaki, N.: Intégration, Paris, 1952.Google Scholar
[ 3 ] Brelot, M.: Nouvelle démonstration du théorème fondamental sur la convergence des potentiels, Ann. Inst. Fourier, 6 (19551956), 361368.Google Scholar
[ 4 ] Cartan, H.: Théorie du potentiel newtonien, énergie, capacité, suites de potentiels, Bull. Soc. Math., 73 (1945), 74106.Google Scholar
[ 5 ] Choquet, G., Theory of capacities, Ann. Inst. Fourier, 5 (19531954), 133295.Google Scholar
[ 6 ] Choquet, G.: Les noyaux réguliers en théorie du potentiels, C. R. Acad. Sci., Paris, 243 (1956), 635638.Google Scholar
[ 7 ] Choquet, G.: Sur les fondements de la théorie fine du potentiel, ibid., 244 (1957), 16061609.Google Scholar
[ 8 ] Frostman, O.; Potentiel d’équilibre et capacité des ensembles avec quelques applications à la théorie des fonctions, Thèse, Lund, (1935), 1118.Google Scholar
[ 9 ] Hahn, H.: Théorie der reellen Funktionen, Bd. 1, Berlin, 1921.CrossRefGoogle Scholar
[10] Kishi, M.: On a theorem of Ugaheri, Proc. Japa. Acad., 32 (1956), 314319.Google Scholar
[11] Kishi, M.: Inferior limit of a sequence of potentials, ibid., 33 (1957), 314319.Google Scholar
[12] Kryloff, N. and Bogoliouboff, N.: La théorie general de la mesure dans son application à l’étude des systemes dynamiques de la mécanique non linéaire, Ann. of Math., 38 (1937), 65113.CrossRefGoogle Scholar
[13] Ninomiya, N.: Sur le théorème du balayage et le théorème de d’équilibre, Jour. Inst. Polytech. Osaka City Univ., 6 (1955), 8391.Google Scholar
[14] Ninomiya, N.: Sur le principe de continuité dans la théorie du potentiel, ibid., 8 (1957), 5156.Google Scholar
[15] Ohtsuka, M.: Sur un espace complet de mesures positives dans la théorie du potentiel, Proc. Japan Acad., 32, (1956), 311313.Google Scholar
[16] Ohtsuka, M.: Sur un théorème de M. Kishi, ibid., 32 (1956), 722725.Google Scholar
[17] Ohtsuka, M.: Les relations entre certains principes en théorie du potentiel, ibid., 33 (1957), 3740.Google Scholar
[18] Ohtsuka, M.: Selected topics in the theory of functions, Tokyo, 1957 (in Japanese).Google Scholar
[19] Ugaheri, T.: On the general capacities and potentials, Bull. Tokyo Inst. Tech., 4 (1953), 149179.Google Scholar