Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-13T05:27:08.374Z Has data issue: false hasContentIssue false

Computation of L(0, χ) and of relative class numbers of CM-fields

Published online by Cambridge University Press:  22 January 2016

Stéphane Louboutin*
Affiliation:
Institut de Mathématiques de Luminy, UPR 9016, 163, avenue de Luminy, Case 907, 13288 Marseille Cedex 9, France, loubouti@iml.univ-mrs.fr
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let χ be a nontrivial Hecke character on a (strict) ray class group of a totally real number field L of discriminant dL. Then, L(0, χ) is an algebraic number of some cyclotomic number field. We develop an efficient technique for computing the exact values at s = 0 of such abelian Hecke L-functions over totally real number fields L. Let fχ denote the norm of the finite part of the conductor of χ. Then, roughly speaking, we can compute L(0, χ) in O((dLfx)0.5+∊) elementary operations. We then explain how the computation of relative class numbers of CM-fields boils down to the computation of exact values at s = 0 of such abelian Hecke L-functions over totally real number fields L. Finally, we give examples of relative class number computations for CM-fields of large degrees based on computations of L(0, χ) over totally real number fields of degree 2 and 6.

Type
Research Article
Copyright
Copyright © Editorial Board of Nagoya Mathematical Journal 2001

References

[Cas] Cassou-Noguès, P., Valeurs aux entiers négatifs des fonctions zêta et fonctions zêta p-adiques, Invent. Math., 51 (1979), 2959.CrossRefGoogle Scholar
[CK] Chang, K.-Y. and Kwon, S.-H., The non-abelian normal CM-fields of degree 36 with calss number one, Acta Arith., to appear.Google Scholar
[CS1] Coates, J. and Sinnott, W., On p-adic L-functions over real quadratic fields, Invent. Math., 25 (1974), 253279.Google Scholar
[CS2] Coates, J. and Sinnott, W., Integrality properties of the values of partial zeta functions, Proc. London Math. Soc, 34 (1977), 365384.Google Scholar
[FQ] Frühlich, A. and Queyrut, J., On the functional equation of the Artin L-function for characters of real representations, Invent. Math., 20 (1973), 125138.Google Scholar
[Fro] Frühlich, A., Artin-root numbers and normal integral bases for quaternion fields, Invent. Math., 17 (1972), 143166.Google Scholar
[Hid] Hida, H., Elementary theory of L-functions and Eisenstein series, London Mathematical Society, Student Texts 26., Cambridge University Press, 1993.Google Scholar
[Lan] Lang, S., Algebraic Number Theory, Springer-Verlag, Grad. Texts Math. 110, Second Edition, 1994.Google Scholar
[Lef] Lefeuvre, Y., Corps diédraux à multiplication complexe principaux, Ann. Inst. Fourier (Grenoble), 50 (2000), 67103.Google Scholar
[Lem] Lemmermeyer, F., Kuroda’s class number formula, Acta Arith., 66 (1994), 245260.Google Scholar
[LLO] Lemmermeyer, F., Louboutin, S. and Okazaki, R., The class number one problem for some non-abelian normal CM-fields of degree 24, J. Théor. Nombres Bordeaux, 11 (1999), 387406.Google Scholar
[LO] Louboutin, S. and Okazaki, R.., The class number one problem for some non-abelian normal CM-fields of 2-power degrees, Proc. London. Math. Soc. (3), 76 (1998), 523548.Google Scholar
[LOO] Louboutin, S., Okazaki, R. and Olivier, M., The class number one problem for some non-abelian normal CM-fields, Trans. Amer. Math. Soc, 349 (1997), 36573678.Google Scholar
[Lou1] Louboutin, S., Calcul du nombre de classes des corps de nombres, Pacific J. Math., 171 (1995), 455467.Google Scholar
[Lou2] Louboutin, S., Computation of relative class numbers of CM-fields, Math. Comp., 66 (1997), 173184.Google Scholar
[Lou3] Louboutin, S., Upper bounds on |L(1,χ)| and applications, Canad. Math. J. (4), 50 (1998), 794815.CrossRefGoogle Scholar
[Lou4] Louboutin, S., Computation of relative class numbers of imaginary abelian number fields, Experimental Math., 7 (1998), 293303.Google Scholar
[Lou5] Louboutin, S., Sur le calcul numérique des constantes des équation fonctionnelles des fonctions L associées aux caractèresimpairs, C. R. Acad. Sci. Paris, 329 (1999), 347350.Google Scholar
[Lou6] Louboutin, S., Computation of relative class numbers of CM-fields by using Hecke L-functions, Math. Comp., 69 (2000), 371393.Google Scholar
[Lou7] Louboutin, S., Explicit bounds for residues of Dedekind zeta functions, values at s = 1 of L-functions and relative class numbers, J. Number Theory, 85 (2000), 263282.Google Scholar
[Lou8] Louboutin, S., Formulae for some Artin root numbers, Tatra Mountains Math. Publ, to appear.Google Scholar
[LP] Louboutin, S. and Park, Y.-H., Class number problems for dicyclic CM-fields, Publ. Math. Debrecen, 57 (2000), 283295.Google Scholar
[Park] Park, Y.-H., The calss number one problem for the non-abelian normal CM-fields of degree 24 and 40, Acta Arith., to appear.Google Scholar
[LPCK] Louboutin, S., Par, Y.-H., Chang, K.-Y. and Kwon, S.-H., The class number one problem for the non abelian normal CM-fields of degree 2pq, Preprint (1999).Google Scholar
[LPL] Louboutin, S., Park, Y.-H. and Lefeuvre, Y., Construction of the real dihedral number fields of degree 2p. Applications, Acta Arith., 89 (1999), 201215.Google Scholar
[Mar] Martinet, J., Sur l’arithmétique des extensions à groupe de Galois diédral d’ordre 2p, Ann. Inst. Fourier (Grenoble), 19 (1969), 180.Google Scholar
[Odl] Odlyzko, A. M., Some analytic estimates of class numbers and discriminants, Invent. Math., 29 (1975), 275286.Google Scholar
[Oka1] Okazaki, R., On evaluation of L-functions over real quadratic fields, J. Math. Kyoto Univ., 31 (1991), 11251153.Google Scholar
[Oka2] Okazaki, R., An elementary proof for a theorem of Thomas and Vasquez, J. Number Theory, 55 (1995), 197208.Google Scholar
[Pes] Pestour, M., Valeurs en s = 1 de fonctions L, Acta Arith., 78 (1997), 367376.Google Scholar
[Shi] Shintani, T., On evaluation of zeta functions of totally real algebraic number fields at non-positive integers, J. Fac. Sci. Univ. Tokyo, 23 (1976), 373471.Google Scholar
[Tsu] Tsuyumine, S., On values of L-functions of totally real algebraic number fields at integers, Acta Arith., 76 (1996), 359392.Google Scholar
[Wa] Washington, L.C., Introduction to Cyclotomic Fields, Springer-Verlag, Grad. Texts Math. 83, Second Edition, 1997.Google Scholar
[Zag1] Zagier, D., A Kronecker limit formula for real quadratic fields,, Math. Ann., 213 (1975), 153184.Google Scholar
[Zag2] Zagier, D., Nombres de classes et fractions continues, Soc. Math. de France, Astérisque., 2425 (1975), 8197.Google Scholar
[Zag3] Zagier, D., Valeurs des fonctions zêta des corps quadratiques réels aux entiers négatifs,, Soc. Math. de France, Astérisque., 4142 (1977), 135151.Google Scholar