Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2025-01-01T10:36:30.343Z Has data issue: false hasContentIssue false

Decay estimates for solutions of nonlocal semilinear equations

Published online by Cambridge University Press:  11 January 2016

Marco Cappiello
Affiliation:
Dipartimento di Matematica, Università di Torino, 10123 Torino, Italy, marco.cappiello@unito.it
Todor Gramchev
Affiliation:
Dipartimento di Matematica e Informatica, Università di Cagliari, 09124 Cagliari, Italy, todor@unica.it
Luigi Rodino
Affiliation:
Dipartimento di Matematica, Università di Torino, 10123 Torino, Italy, luigi.rodino@unito.it
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We investigate the decay for |x|→∞ of weak Sobolev-type solutions of semilinear nonlocal equations Pu = F(u). We consider the case when P = p(D) is an elliptic Fourier multiplier with polyhomogeneous symbol p(ξ), and we derive algebraic decay estimates in terms of weighted Sobolev norms. Our basic example is the celebrated Benjamin–Ono equation

for internal solitary waves of deep stratified fluids. Their profile presents algebraic decay, in strong contrast with the exponential decay for KdV shallow water waves.

Type
Research Article
Copyright
Copyright © Editorial Board of Nagoya Mathematical Journal 2015

References

[1] Agmon, S., Lectures on Exponential Decay of Second-Order Elliptic Equations: Bounds on Eigenfunctions of N-body Schrödinger Operators, Math. Notes 29, Princeton University Press, Princeton, 1982. MR 0745286.Google Scholar
[2] Amick, C. J. and Toland, J. F., Uniqueness and related analytic properties for the Benjamin-Ono equation A nonlinear Neumann problem in the plane, Acta Math. 167 (1991), 107126. MR 1111746. DOI 10.1007/BF02392447.CrossRefGoogle Scholar
[3] Benjamin, T. B., Internal waves of permanent form in fluids of great depth, J. Fluid Mech. 29 (1967), 559592.Google Scholar
[4] Biagioni, H. A. and Gramchev, T., Fractional derivative estimates in Gevrey spaces, global regularity and decay for solutions to semilinear equations in ℝn , J. Differential Equations 194 (2003), 140165. MR 2001032. DOI 10.1016/S0022-0396(03)00197-9.Google Scholar
[5] Bona, J. L. and Li, Y. A., Analyticity of solitary-wave solutions of model equations for long waves, SIAM J. Math. Anal. 27 (1996), 725737. MR 1382830. DOI 10.1137/0527039.Google Scholar
[6] Bona, L. and Li, A., Decay and analyticity of solitary waves, J. Math. Pures Appl. (9) 76 (1997), 377430. MR 1460665. DOI 10.1016/S0021-7824(97)89957-6.Google Scholar
[7] Bona, J. L. and Luo, L., Large-time asymptotics of the generalized Benjamin-Ono-Burgers equation, Discrete Contin. Dyn. Syst. Ser. S 4 (2011), 1550. MR 2746393. DOI 10.3934/dcdss.2011.4.15.Google Scholar
[8] Burq, N. and Planchon, F., On well-posedness for the Benjamin-Ono equation, Math. Ann. 340 (2008), 497542. MR 2357995. DOI 10.1007/s00208-007-0150-y.CrossRefGoogle Scholar
[9] Cappiello, M., Gramchev, T., and Rodino, L., “Semilinear pseudo-differential equations and travelling waves” in Pseudo-differential Operators: Partial Differential Equations and Time-Frequency Analysis, Fields Inst. Commun. 52, Amer. Math. Soc., Providence, 2007, 213238. MR 2385327.Google Scholar
[10] Cappiello, M., Gramchev, T., and Rodino, L., Sub-exponential decay and uniform holomorphic extensions for semilinear pseudodifferential equations, Comm. Partial Differential Equations 35 (2010), 846877. MR 2753622. DOI 10.1080/03605300903509120.CrossRefGoogle Scholar
[11] Cappiello, M. and Nicola, F., Holomorphic extension of solutions of semilinear elliptic equations, Nonlinear Anal. 74 (2011), 26632681. MR 2776517. DOI 10.1016/j.na.2010.12.021.Google Scholar
[12] Cappiello, M. and Nicola, F., Regularity and decay of solutions of nonlinear harmonic oscillators, Adv. Math. 229 (2012), 12661299. MR 2855093. DOI 10.1016/j.aim.2011.10.018.CrossRefGoogle Scholar
[13] Cordes, H. O., The Technique of Pseudodifferential Operators, London Math. Soc. Lecture Note Ser. 202, Cambridge University Press, Cambridge, 1995. MR 1314815. DOI 10.1017/CBO9780511569425.Google Scholar
[14] de Bouard, A. and Saut, J.-C., Symmetries and decay of the generalized Kadomtsev-Petviashvili solitary waves, SIAM J. Math. Anal. 28 (1997), 10641085. MR 1466669. DOI 10.1137/S0036141096297662.Google Scholar
[15] de Laire, A., Minimal energy for the traveling waves of the Landau-Lifshitz equation, SIAM J. Math. Anal. 46 (2014), 96132. MR 3148081. DOI 10.1137/130909081.Google Scholar
[16] Erdélyi, A., Magnus, W., Oberhettinger, F., and Tricomi, F. G., Higher Transcendental Functions, I, II, McGraw-Hill, New York, 1953. MR 0058756.Google Scholar
[17] Fonseca, G. and Ponce, G., The IVP for the Benjamin-Ono equation in weighted Sobolev spaces, J. Funct. Anal. 260 (2011), 436459. MR 2737408. DOI 10.1016/j.jfa.2010.09.010.Google Scholar
[18] Gelfand, I. M. and Shilov, G. E., Generalized Functions, I: Properties and Operations, Academic Press, New York, 1964. MR 0166596.Google Scholar
[19] Gelfand, I. M. and Shilov, G. E., Generalized Functions, II: Spaces of Fundamental and Generalized Functions, Academic Press, New York, 1968. MR 0230128.Google Scholar
[20] Gravejat, P., Asymptotics of the solitary waves for the generalized Kadomtsev-Petviashvili equations, Discrete Contin. Dyn. Syst. 21 (2008), 835882. MR 2399440. DOI 10.3934/dcds.2008.21.835.CrossRefGoogle Scholar
[21] Hounie, J., On the L2 continuity of pseudodifferential operators, Comm. Partial Differential Equations 11 (1986), 765778. MR 0837930. DOI 10.1080/03605308608820444.Google Scholar
[22] Iliev, I. D., Khristov, E. K., and Kirchev, K. P., Spectral Methods in Soliton Equations, Pitman Monogr. Surveys Pure Appl. Math. 73, Longman Scientific & Technical, New York, 1994. MR 1400888.Google Scholar
[23] Linares, F., Pilod, D., and Ponce, G., Well-posedness for a higher-order Benjamin-Ono equation, J. Differential Equations 250 (2011), 450475. MR 2737850. DOI 10.1016/j.jde.2010.08.022.CrossRefGoogle Scholar
[24] Lockhart, R. B. and McOwen, R. C., On elliptic systems in ℝn , Acta Math. 150 (1983), 125135; Correction, Acta Math. 153 (1984), 303-304. MR 0697610. DOI 10.1007/BF02392969.Google Scholar
[25] Maris, M., On the existence, regularity and decay of solitary waves to a generalized Benjamin-Ono equation, Nonlinear Anal. 51 (2002), 10731085. MR 1926086. DOI 10.1016/S0362-546X(01)00880-X.Google Scholar
[26] McOwen, R. C., On elliptic operators in ℝn , Comm. Partial Differential Equations 5 (1980), 913933. MR 0584101. DOI 10.1080/03605308008820158.Google Scholar
[27] Molinet, L., Saut, J. C., and Tzvetkov, N., Ill-posedness issues for the Benjamin-Ono and related equations, SIAM J. Math. Anal. 33 (2001), 982988. MR 1885293. DOI 10.1137/S0036141001385307.Google Scholar
[28] Ono, H., Algebraic solitary waves in stratified fluids, J. Phys. Soc. Japan 39 (1975), 10821091. MR 0398275.CrossRefGoogle Scholar
[29] Rabinovich, V. S., “Exponential estimates for eigenfunctions of Schrödinger operators with rapidly increasing and discontinuous potentials” in Complex Analysis and Dynamical Systems, Contemp. Math. 364, Amer. Math. Soc., Providence, 2004, 225236. MR 2099029. DOI 10.1090/conm/364/06687.Google Scholar
[30] Ruzhansky, M. and Sugimoto, M., Smoothing properties of evolution equations via canonical transforms and comparison principle, Proc. Lond. Math. Soc. (3) 105 (2012), 393423. MR 2959931. DOI 10.1112/plms/pds006.CrossRefGoogle Scholar
[31] Schwartz, L., Théorie des distributions, Hermann, Paris, 1966. MR 0209834.Google Scholar
[32] Tao, T., Global well-posedness of the Benjamin-Ono equation in H1(ℝ), J. Hyperbolic Differ. Equ. 1 (2004), 2749. MR 2052470. DOI 10.1142/S0219891604000032.CrossRefGoogle Scholar
[33] Watson, G. N., A treatise on the theory of Bessel functions, reprint of the 2nd ed., Cambridge University Press, Cambridge, 1958. MR 1349110.Google Scholar