Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-11T08:02:52.655Z Has data issue: false hasContentIssue false

Differential operators on quantized flag manifolds at roots of unity, II

Published online by Cambridge University Press:  11 January 2016

Toshiyuki Tanisaki*
Affiliation:
Department of Mathematics Osaka City University Sumiyoshi-ku, Osaka 558-8585Japantanisaki@sci.osaka-cu.ac.jp
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We formulate a Beilinson-Bernstein-type derived equivalence for a quantized enveloping algebra at a root of 1 as a conjecture. It says that there exists a derived equivalence between the category of modules over a quantized enveloping algebra at a root of 1 with fixed regular Harish-Chandra central character and the category of certain twisted D-modules on the corresponding quantized flag manifold. We show that the proof is reduced to a statement about the (derived) global sections of the ring of differential operators on the quantized flag manifold. We also give a reformulation of the conjecture in terms of the (derived) induction functor.

Keywords

Type
Research Article
Copyright
Copyright © Editorial Board of Nagoya Mathematical Journal 2014

References

[1] Artin, M. and Zhang, J. J., Noncommutative projective schemes, Adv. Math. 109 1994, 228287. MR 1304753. DOI 10.1006/aima.1994.1087.CrossRefGoogle Scholar
[2] Backelin, E. and Kremnizer, K., Quantum flag varieties, equivariant quantum V-modules, and localization of quantum groups, Adv. Math. 203 2006, 408429. MR 2227727. DOI 10.1016/j.aim.2005.04.012.CrossRefGoogle Scholar
[3] Backelin, E. and Kremnizer, K., Localization for quantum groups at a root of unity, J. Amer. Math. Soc. 21 2008, 1001-1018. MR 2425178. DOI 10.1090/S0894-0347-08-00608-5.CrossRefGoogle Scholar
[4] Backelin, E. and Kremnizer, K., Global quantum differential operators on quantum flag manifolds, theorems of Duflo and Kostant, preprint, arXiv:1106.4343 [math.RT].Google Scholar
[5] Bezrukavnikov, R., Mirkovic, I., and Rumynin, D., Singular localization and intertwining functors for reductive Lie algebras in prime characteristic, Nagoya Math. J. 184 2006, 155. MR 2285230.CrossRefGoogle Scholar
[6] Bezrukavnikov, R., Mirkovic, I., and Rumynin, D., Localization of modules for a semisimple Lie algebra in prime characteristic, Ann. of Math. (2) 167 2008, 945991. MR 2415389. DOI 10.4007/annals.2008.167. 945.CrossRefGoogle Scholar
[7] Brown, K. A. and Goodearl, K. R., Homological aspects of Noetherian PI Hopf algebras of irreducible modules and maximal dimension, J. Algebra 198, 1997, 240265. MR 1482982. DOI 10.1006/jabr.1997.7109.CrossRefGoogle Scholar
[8] Concini, C. De and Kac, V. G., “Representations of quantum groups at roots of 1” in Operator Algebras, Unitary Representations, Enveloping Algebras, and Invariant Theory (Paris, 1989), Progr. Math. 92, Birkh¨auser, Boston, 1990 471506. MR 1103601.Google Scholar
[9] Concini, C. De and Procesi, C., “Quantum groups” in D-modules, Representation Theory and Quantum Groups (Venice, 1992), Lecture Notes in Math. 1565 Springer, Berlin, 1993, 31140. MR 1288995. DOI 10.1007/BFb0073466.Google Scholar
[10] Gavarini, F., Quantization of Poisson groups, Pacific J. Math. 186 1998, 217266. MR 1663802. DOI 10.2140/pjm.1998.186.217.CrossRefGoogle Scholar
[11] Joseph, A., Quantum Groups and Their Primitive Ideals, Ergeb. Math. Grenzgeb. (3) 29, Springer, Berlin, 1995. MR 1315966.CrossRefGoogle Scholar
[12] Joseph, A. and Letzter, G., Separation of variables for quantized enveloping algebras, Amer. J. Math. 116 1994, 127177. MR 1262429. DOI 10.2307/2374984.CrossRefGoogle Scholar
[13] Lusztig, G., Quantum deformations of certain simple modules over enveloping algebras, Adv. Math. 70 1988, 237249. MR 0954661. DOI 10.1016/0001-8708(88) 90056-4.CrossRefGoogle Scholar
[14] Lusztig, G., Quantum groups at roots of 1, Geom. Dedicata 35 1990, 89113. MR 1066560. DOI 10.1007/BF00147341.CrossRefGoogle Scholar
[15] Lusztig, G., Introduction to Quantum Groups, Progr. Math. 110, Birkh¨auser, Boston, 1993. MR 1227098.Google Scholar
[16] Popescu, N., Abelian Categories with Applications to Rings and Modules, London Math. Soc. Monogr. Ser. 3, Academic Press, London, 1973. MR 0340375.Google Scholar
[17] Steinberg, R., On a theorem of Pittie, Topology 14 1975, 173177. MR 0372897.CrossRefGoogle Scholar
[18] Tanisaki, T., “Killing forms, Harish-Chandra isomorphisms, and universal R-matricesfor quantum algebrasin Infinite Analysis, Part A, B (Kyoto, 1991), Adv. Ser. Math. Phys. 16, World Sci. Publ., River Edge, New Jersey, 1992, 941961. MR 1187582.CrossRefGoogle Scholar
[19] Tanisaki, T., The Beilinson–Bernstein correspondence for quantized enveloping algebras, Math. Z. 250 2005, 299361. MR 2178788. DOI 10.1007/s00209-004-0754-9.CrossRefGoogle Scholar
[20] Tanisaki, T., Differential operators on quantized flag manifolds at roots of unity, Adv. Math. 230 2012, 22352294. MR 2927370. DOI 10.1016/j.aim.2012.04.018.CrossRefGoogle Scholar
[21] Tanisaki, T., Manin triples and differential operators on quantum groups, Tokyo J. Math., 36 2013, 4983.CrossRefGoogle Scholar