Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-26T20:51:34.889Z Has data issue: false hasContentIssue false

Eisenstein series in hyperbolic 3-space and Kronecker limit formula for biquadratic field

Published online by Cambridge University Press:  22 January 2016

Shuji Konno*
Affiliation:
Kobe Women’s College of Pharmacy, Motoyama Kitamachi 4-19-1 Higashinada-ku, Kobe 657, Japan
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let L = K be the composite of two imaginary quadratic fields and K. Suppose that the discriminants of and K are relatively prime. For any primitive ray class character χ of L, we shall compute L(1, χ) for the Hecke L-function in L. We write for the conductor of χ and C for the ray class modulo . Let c ε C be any integral ideal prime to . We write as g-module where g, n and ϑL are, respectively, the ring of integers in k, an ideal in k and the differente of L. Let where T(χ) is the Gaussian sum and, as in (3.2),

Type
Research Article
Copyright
Copyright © Editorial Board of Nagoya Mathematical Journal 1989

References

[1] Asai, T., On a certain function analogous to log |η(z)|, Nagoya Math. J., 40 (1970), 193211.CrossRefGoogle Scholar
[2] Beardon, A. F., The geometry of discrete groups; Discrete groups and automorphic functions, Proc. Conf. Univ. Cambridge (1975).Google Scholar
[3] Elstrodt, J., Grunewald, F., Mennicke, J., Eisenstein series on three-dimensional hyperbolic space and imaginary quadratic fields, J. reine angew. Math., 360 (1985).Google Scholar
[4] Fujisaki, G., Algebraic number theory (in Japanese), Shōkabō (1974).Google Scholar
[5] Hecke, E., Mathematische Werke, Göttingen (1959).Google Scholar
[6] Konno, S., On Kronecker limit formula for certain biquadratic fields, Advanced Studies in Pure Math., 13 (1988), 297311.CrossRefGoogle Scholar
[7] Kubota, T., Über diskontinuierliche Gruppen vom Picardschen Typus und zugehörige Eisensteinsche Reihen, Nagoya Math. J., 32 (1968), 259271.CrossRefGoogle Scholar
[8] Magnus, W., Oberhettinger, F., Soni, R. P., Formulas and theorems for the special functions of mathematical physics, Grundl. math. Wiss. 52, Berlin-Heidelberg-New York (1966).Google Scholar
[9] Siegel, C. L., Lecture notes on advanced analytic number theory, Bombay (1961).Google Scholar
[10] Siegel, C. L., Bernoullische Polynome und quadratische Zahlkörper, Gesammelte Abhandlungen Bd IV.Google Scholar
[11] Weil, A., Dirichlet series and automorphic forms, Lecture notes in Math. 189, Springer-Verlag (1971).Google Scholar
[12] Weil, A., Elliptic functions according to Eisenstein and Kronecker, Berlin-Heidelberg-New York (1976).CrossRefGoogle Scholar