Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-10T23:41:51.218Z Has data issue: false hasContentIssue false

Geometric Quantities of Manifolds with grassmann structure

Published online by Cambridge University Press:  11 January 2016

N. Bokan
Affiliation:
Dipartimento di Matematica VialeMerello 92 09123Cagliari Italymatzeu@vaxca1.unica.it
P. Matzeu
Affiliation:
Dipartimento di Matematica VialeMerello 92 09123Cagliari Italymatzeu@vaxca1.unica.it
Z. Rakić
Affiliation:
Faculty of Mathematics University of Belgrade Studentski 16, PP 550 11001 BelgradeSerbia and Montenegrozrakic@matf.bg.ac.yu
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We study geometry of manifolds endowed with a Grassmann structure which depends on symmetries of their curvature. Due to this reason a complete decomposition of the space of curvature tensors over tensor product vector spaces into simple modules under the action of the group G = GL(p, ℝ) ⊗ GL(q, ℝ) is given. The dimensions of the simple submodules, the highest weights and some projections are determined. New torsion-free connections on Grassmann manifolds apart from previously known examples are given. We use algebraic results to reveal obstructions to the existence of corresponding connections compatible with some type of normalizations and to enlighten previously known results from another point of view.

Keywords

Type
Research Article
Copyright
Copyright © Editorial Board of Nagoya Mathematical Journal 2005

References

[1] Akivis, M. and Goldberg, V., Conformal Differential Geometry and its generalizations, Pure and Applied Mathematics, John Wiley & Sons, New York, 1996.Google Scholar
[2] Alekseevsky, D. V., Riemannian spaces with unusual holonomy groups, Func. Anal and Appl., 2 (1968), 97105.CrossRefGoogle Scholar
[3] Alekseevsky, D. V., Cortes, V. and Devchand, C., Yang-Mills connections over manifolds with Grassmann structure, J. Math. Phys., 44 (2003), 60476076.CrossRefGoogle Scholar
[4] Alekseevsky, D. V. and Graev, M. M., Twistors and G-structures, Izv. Ross. Akad. Nauk, Ser. Matem. Tom, 56 (1992), no. 1, 337; English translation: Russian Acad. Sci. Izv. Math., 40 (1993), no. 1, 131.Google Scholar
[5] Alekseevsky, D. V. and Marchiafava, S., Quaternionic structures on a manifold and subordinated structures, Ann. Mat. pura Appl., CLXXI (1996), no. IV, 205273.CrossRefGoogle Scholar
[6] Atiyah, M. F., Hitchin, N. J. and Singer, I. M., Self-duality in four-dimensional Rie-mannian geometry, Proc. Roy. Soc. London, Ser. A, 362 (1978), 425467.Google Scholar
[7] Bailey, T. N. and Eastwood, M. G., Complex paraconformal manifolds – their differential geometry and twistor theory, Forum Math., 3 (1991), 61103.CrossRefGoogle Scholar
[8] Berger, M., Sur les groupes d’holonomie homogène des variétés a connexion affine et des variétés riemanniennes, Bull. Soc. Math. France, 83 (1955), 279330.CrossRefGoogle Scholar
[9] Blaˇzić, N. and Bokan, N., Compact Riemann surfaces with skew-symmetric Ricci tensor, Izv. VUZ, 9 (376) (1993), 812.Google Scholar
[10] Blaˇzić, N. and Bokan, N., Projective and affine transformations of a complex symmetric connection, Bull. Austral. Math. Soc., 50 (1994), 337347.CrossRefGoogle Scholar
[11] Blair, D. and Ledger, A., A characterization of oriented Grassmann manifolds, Rocky Mt. J. Math., 15 (1984), 573584.Google Scholar
[12] Boerner, , Representations of groups, 2 nd edition, Elsevir North-Holland, Amsterdam, 1970.Google Scholar
[13] Bokan, N., The decomposition theory and its applications, The math. heritage of C. F. Gauss (Rassias, G. M., ed.), World Sci. Publ. Co. Singapore (1991), pp. 6699.CrossRefGoogle Scholar
[14] Bryant, R., Two exotic holonomies in dimension four, Path geometries, and Twistor Theory, Proc. Symp. in Pure Math., 53 (1991), 3388.CrossRefGoogle Scholar
[15] Chi, Q. S. and Schwachhöfer, L., Exotic holonomy on moduli spaces of rational curves, Differ. Geom. Appl., 8 (1998), no. 2, 105134.CrossRefGoogle Scholar
[16] Dimitric, I., A note on equivariant embeddings of Grassmannians, Publ. Inst. Math., 59 (73) (1996), 131137.Google Scholar
[17] Dieudonné, J., Schur functions and group representations, Young tableaux and Schur functors in algebra and geometry, Astéerisque, 8788 (1981), 719.Google Scholar
[18] Eells, J. and Salamon, S., Constructions twistorielles des applications harmoniques, C. R. Acad. Sci. Paris Sér. I Math., 296 (1983), 685687.Google Scholar
[19] Fulton, W. and Harris, J., Representation Theory, GTM 129, Springer-Verlag, New York, Berlin, Heidelberg, 1991.Google Scholar
[20] Gray, A. and Hervella, L., The sixteen classes of almost Hermitian manifolds, Ann. Mat. Pura Appl., 123 (1980), 3558.CrossRefGoogle Scholar
[21] Hamermesh, M., Group theory and its application to physical processes, Addison-Wesley Publishing Company, Reading, Massachusetts, 1962.Google Scholar
[22] Hangan, Th., Le pseudo-groupe projectif grassmannien (Romanian), An. Sti. Univ. Al. I. Cuza Iasi, N. Ser., Sect. Ia 11B (1965), 349355.Google Scholar
[23] Hangan, Th., Tensor-product tangent bundles, Arch. der Math., 19 (4) (1968), 436448.CrossRefGoogle Scholar
[24] Hangan, Th., Sur l’intégrabilité des structures tangentes produits tensoriels réels, Ann. Mat. Pura et Appl., 126 (1980), 149185.CrossRefGoogle Scholar
[25] Hano, J. and Ozeki, H., On the holonomy group of linear connections, Nagoya Math. J., 10 (1956), 97100.CrossRefGoogle Scholar
[26] Itzykson, C. and Nauenberg, M., Unitary groups: Representations and Decompositions, Reviews of Modern Physics, 38 (1966), no. 1, 95120.CrossRefGoogle Scholar
[27] Ishihara, S., Groups of projective transformations and groups of conformal transformations, Jour. Math. Soc. of Japan, 9 (1957), no. 2, 195227.Google Scholar
[28] Kempf, G. and Ness, L., Tensor products of fundamental representations, Can J. Math., 40 (1988), 633648.CrossRefGoogle Scholar
[29] Kobayashi, S. and Nomizu, K., Foundations of differential geometry Vol. 1 and 2, Interscience Publishers, New York, London, 1963.Google Scholar
[30] Kobayashi, S. and Nagano, T., On projective connections, J. Math. Mechanics, 13 (1964), no. 2, 215235.Google Scholar
[31] Kulkarni, R. R., On the Bianchi identities, Math. Ann., 199 (1972), 175204.CrossRefGoogle Scholar
[32] Leichtweiss, K., Zur Riemannschen Geometrie in Grassmannschen Mannigfaltig-keiten, Math. Zeitschr., 76 (1961), 334366.CrossRefGoogle Scholar
[33] Littlewood, D. E., Invariant theory, tensors and group characters, Phil. Trans. Royal Soc. London A, 239 (1944), 305365.Google Scholar
[34] Machida, Y. and Sato, H., Twistor theory of manifolds with Grassmannian structures, Nagoya Math. J., 160 (2000), 17102.CrossRefGoogle Scholar
[35] Manin, Yu. I., Gauge Field Theory and Complex Geometry, 2 nd edition, Springer-Verlag, New York, 1997.Google Scholar
[36] Manin, Yu. I., New dimensions in geometry, Lect. Notes in Math., 1111, Spring-er-Verlag, New York (1985), pp. 59101.Google Scholar
[37] Marchiafava, S., Varietá localmente grassmanniane quaternionali, Atti Accad. naz. dei Lincei, 57 (1974), 8089.Google Scholar
[38] S. A. Merkulov, Paraconformal supermanifolds and nonstandard N-extended super-gravity models, Classical Quantum Grav., 8 (1991), 557569.CrossRefGoogle Scholar
[39] Merkulov, S. and Schwachhöfer, L., Classification of irreducible holonomies of torsion-free affine connections, Ann. Math. (2), 150 (1999), no. 1, 77149.Google Scholar
[40] Merkulov, S. and Schwachhöfer, L., Addendum to: Classification of irreducible holo-nomies of torsion-free affine connections, Ann. Math. (2), 150 (1999), no. 3, 11771179.CrossRefGoogle Scholar
[41] Norden, A. P., Manifolds with affine connection, Russ. edition, Nauka, Moscow, 1976.Google Scholar
[42] Penrose, R., The twistor programme, Rep. Math. Phys., 12 (1977), 6576.CrossRefGoogle Scholar
[43] Pontryagin, L. S., Characteristic cycles on differentiable manifolds, Matematicheskii Sbornik (NS), 21 (63) (1947), 233284; AMS (1950), Translation n. 32.Google Scholar
[44] Salamon, S., Riemannian geometry and holonomy groups, Pitman Research Notes in Mathematics Series 201, John Wiley & Sons., New York, 1989.Google Scholar
[45] Simon, U., Connections and conformal structure in differential geometry, Proc. of the Conference, Brno, August 2430, 1986, D. Reidel Publishing Company, Dordrect (1986), pp. 315328.Google Scholar
[46] Singer, I. M. and Thorpe, J. A., The curvature of 4-dimensional Einstein space, Global Analysis (paper in honour of K. Kodaira), Univ. of Tokyo Press, Tokyo (1969), pp. 355365.Google Scholar
[47] Strichartz, R., Linear algebra of curvature tensors and their covariant derivative, Can. J. Math., XL (1988), no. 5, 11051143.CrossRefGoogle Scholar
[48] Tamássy, L., Über den Affinzusammenhang von, zu tangentialräumen gehörenden Produkträumen, Acta Math. Acad. Sci. Hungar., 11 (1960), no. 12, 6582.CrossRefGoogle Scholar
[49] Tamássy, L., Aus dekomponierbaren Elementen bestehende Gebilde eines Produkt-raumes, Matem. Vesnik, 2 (17) (1965), 121126.Google Scholar
[50] Tricerri, F. and Vanhecke, L., Curvature tensors on almost Hermitian manifolds, Trans. of the Amer. Math. Soc., 267 (1981), no. 2, 365398.CrossRefGoogle Scholar
[51] Vukmirović, S., Para-quaternionic Kähler reduction, preprint (2003); arsxv: math. DG/0304424.Google Scholar
[52] Wolf, J. A., Space forms of Grassmann manifolds, Can. J. Math., 15 (1963), 193205.CrossRefGoogle Scholar
[53] Zelikin, M. I., Homogeneous spaces and the Riccati equation in variational calulus, Russian ed., Factorial, Moscow, 1998.Google Scholar