Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-27T10:44:12.660Z Has data issue: false hasContentIssue false

The Hecke algebra on the cohomology of Γ0 (p0)

Published online by Cambridge University Press:  22 January 2016

Xiangdong Wang*
Affiliation:
Mathematisches Institut, der Universität Bonn, Beringstr, 1, D-5300 Bonn, Germany
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let p0 be a prime, p0 > 3 and Γ0(p0), Γ1(p0) as usual, the congruence subgroups of Γ = PSL2().

Type
Research Article
Copyright
Copyright © Editorial Board of Nagoya Mathematical Journal 1991

References

[AS] Ash, A. and Stevens, G., Cohomology of arithmetic groups and congruences between systems of Hecke eigenvalues, J. reine angew. Math., 356 (1986), 192220.Google Scholar
[Bro] Brown, K., Cohomology of groups, GTM 87, Springer Verlag (1982).Google Scholar
[Hab] Haberland, K., Perioden von Modulformen einer Variabler und Gruppenkohomologie I, II, III, Math. Nachr., 112 (1983), 245315.CrossRefGoogle Scholar
[Rib] Ribet, K. A., Galois representations attached to eigenform with nebentypus, in: Lecture Notes in Math., 601, Springer Verlag.Google Scholar
[Ser] Serre, J.-P., A course in arithmetic, GTM 7, Springer Verlag (1973).Google Scholar
[Shi] Shimura, G., On elliptic curves with complex multiplication as factor of the Jacobians of modular function fields, Nagoya Math. J., 43 (1971), 199208.Google Scholar
[Wan] Wang, X.-D., Die Eisensteinklasse in H 1(SL 2(Z), Mn (Z)) und die Arithmetik spezieller Werte von L-Funktionen, Bonner Math. Schriften, 20.2, Bonn (1989).Google Scholar