Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-10T09:05:53.303Z Has data issue: false hasContentIssue false

Homogeneous Sphere Bundles and the Isotropic Riemann Manifolds

Published online by Cambridge University Press:  22 January 2016

Tadashi Nagano*
Affiliation:
Mathematical Institute College of General Education University of Tokyo
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let M be a connected metric space and H an isometry group of M which leaves fixed a point p in M. M is said H isotropic at p when, for any two points q and r of M at the same distance from p, there exists an isometry in H which carries q to r. When H coincides with the maximum isometry group leaving p fixed, M is said merely isotropic at p.

Type
Research Article
Copyright
Copyright © Editorial Board of Nagoya Mathematical Journal 1959

References

[1] Borel, A., Le plan projectif des octaves et les sphères comme espaces homogènes. C. R. Paris, 230 (1950), 13781380.Google Scholar
[2] Borel, A., Sur la cohomologie des espaces fibrés principaux et des espaces homogènes de groupes de Lie compacts, Ann. of Math., 57 (1953), 115207.Google Scholar
[3] Borel, A., Les bouts des espaces homogènes de groupes de Lie, Ann. of Math., 58 (1953), 443457.Google Scholar
[4] Borel, A., Topology of Lie groups and characteristic classes, Bull. Amer. Math. Soc., 6, (1955), 397432.CrossRefGoogle Scholar
[5] Bott, R., The stable homotopy of the classical groups, Proc. Nat. Acad. Sci. U.S.A., 43 (1957), 933335.Google Scholar
[6] Bott, R., On manifolds all of whose geodesies are closed, Ann. of Math., 60 (1954), 375382.Google Scholar
[7] Chern, S. S., Topics in differential geometry, Princeton, 1951.Google Scholar
[8] Chevalley, C., Theory of Lie groups I. Princeton, 1946.Google Scholar
[9] Eilenberg, S. and Steenrod, N., Foundations of algebraic topology, Princeton, 1952.CrossRefGoogle Scholar
[10] Freudenthal, H., Zur Berechnung der Charaktere der halb-einfachen Lieschen Gruppen, I. Indag. Math., 16 (1954), 369376.Google Scholar
[11] Freudenthal, H., Neuere Fassungen des Riemann-Helmholtz-Lieschen Raumproblems, Math. Z., 63 (1956), 374405.Google Scholar
[12] Gantmacher, F., Canonical representation of automorphisms of a complex semi-simple Lie group, Math. Sbornik., 5 (1939), 101144.Google Scholar
[13] Harisch, -Chandra, , On some applications of the universal enveloping algebra of a semi-simple Lie algebra, Trans. Amer. Math. Soc, 70 (1951), 2896.CrossRefGoogle Scholar
[14] Koszul, L. J., Homologie et cohomologie des algebres de Lie, Bull. Soc. Math. France, 78 (1950), 65127.Google Scholar
[15] Leray, L. J., L’homologie d’un espace fibré dont la fibre est connexe, J.> Math. Pures Appl., 29 (1950), 169213.Google Scholar
[16] Matsushima, Y., Un théorème sur les espaces homogènes complexes, C. R. Paris., 241 (1955), 785787.Google Scholar
[17] Matsushima, Y., On a type of subgroups of a compact Lie group, Nagoya Math. J., 2 (1951), 151.CrossRefGoogle Scholar
[18] Montgomery, D. and Samelson, H., Transformation groups of spheres, Ann. of Math., 44 (1943), 454470.CrossRefGoogle Scholar
[19] Montgomery, D. and Zippin, L., Topological transformation groups, New-York, 1955.Google Scholar
[20] Mostert, S. P., On a compact Lie group acting on a manifold, Ann. of Math., 65 (1957), 447155; 66 (1957), p. 589.Google Scholar
[21] Nagano, T., Transformation groups with (n — 1)-dimensional orbits, Nagoya Math. J., 14 (1959), 2538.Google Scholar
[22] Samelson, H., Topology of Lie groups, Bull. Amer. Math. Soc, 58 (1952), 237.CrossRefGoogle Scholar
[23] Serre, P. J., Homologie singulière des espaces fibrés. Applications, Ann. of Math., 54 (1951), 425505.CrossRefGoogle Scholar
[24] Steenrod, N., The topology of fibre bundles, Princeton, 1951.Google Scholar
[25] Tits, J., Sur certaines classes d’espaces homogènes de groupes de Lie, Bruxelles, 1955.Google Scholar
[26] Wang, C. H., Two-point homogeneous spaces, Ann. of Math., 55 (1952), 177191.CrossRefGoogle Scholar
[27] Wang, C. H., Homogeneous spaces with non-vanishing Euler characteristics, Ann. of Math., 50 (1949), 925953.Google Scholar
[28] Weyl, H., Theorie der Darstellung knotinuierlicher halb-einfacher Gruppen durch lineare Transformationen, III. Math. Z. 24 (1926), 377395.Google Scholar