Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-27T06:49:01.048Z Has data issue: false hasContentIssue false

Hyperconvexity and Bergman completeness

Published online by Cambridge University Press:  22 January 2016

Zbigniew Blocki
Affiliation:
Institute of Mathematics, Jagiellonian University, Reymonta 4, 30-059 KrakówPoland, blockiim.uj.edu.pl
Peter Pflug
Affiliation:
Fachbereich Mathematik, Carl von Ossietzky Universität, D26111 Oldenburg, Germany, pflug@mathematik.uni-oldenburg.de
Rights & Permissions [Opens in a new window]

Abstract.

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We show that any bounded hyperconvex domain is Bergman complete.

Type
Research Article
Copyright
Copyright © Editorial Board of Nagoya Mathematical Journal 1998

References

[1] Blocki, Z., Estimates for the complex Monge-Ampère operator, Bull. Pol. Acad. Sci., 41 (1993), 151157.Google Scholar
[2] Blocki, Z., On the Lp-stability for the complex Monge-Ampère operator, Michigan Math. J., 42 (1995), 269275.CrossRefGoogle Scholar
[3] Blocki, Z., The complex Monge-Ampere operator in hyperconvex domains, Scuola Normale Superior Pisa, XXIII (1996), 721747.Google Scholar
[4] Carlehed, M., Cegrell, U. and Wikström, F., Jensen measures, hyperconvexity and boundary behaviour of the pluricomplex Green function, Research report no 15, Umeå University (1997).Google Scholar
[5] Chen, B.-Y., Completeness of the Bergman metric on non-smooth pseudoconvex domains, Preprint (1998).Google Scholar
[6] Demailly, J.-P., Mesures de Monge-Ampère et mesures plurisousharmoniques, Math. Z., 194 (1987), 519564.Google Scholar
[7] Diederich, K. and Ohsawa, T., An estimate for the Bergman distance on pseudoconvex domains, Annals of Math., 141 (1995), 181190.Google Scholar
[8] Hörmander, L., Notions of convexity, Birkhäuser, 1994.Google Scholar
[9] Jarnicki, M. and Pflug, P., Invariant distances and metrics in complex analysis, de Gruyter, 1993.Google Scholar
[10] Jarnicki, M. and Pflug, P., Bergman completeness of complete circular domains, Ann. Pol. Math., 50 (1989), 219222.CrossRefGoogle Scholar
[11] Kobayashi, S., Geometry of bounded domains, Trans. Amer. Math. Soc, 92 (1959), 267290.CrossRefGoogle Scholar
[12] Kobayashi, S., Hyperbolic complex spaces, Springer, 1998.Google Scholar
[13] Ohsawa, T., A remark on the completeness of the Bergman metric, Proc. Jap. Acad. Sci., 57 (1981), 238240.Google Scholar
[14] Ohsawa, T., On the Bergman kernel of hyperconvex domains, Nagoya Math. J., 129 (1993), 4359.Google Scholar
[15] Ohsawa, T., An essay on the Bergman metric: balanced domains, Preprint (1998).Google Scholar
[16] Pflug, P., Various applications of the existence of well growing holomorphic functions, Functional Analysis, Holomorphy and Approximation Theory (Barosso, J.A., eds.), 71, North-Holland Math. Studies (1982).Google Scholar
[17] Zaharjuta, V. P., Extremal plurisubharmonic functions, Hilbert scales, and the spaces of analytic functions of several variables, Teor. Funkcii Funkcional. Anal, i Prilozen, 19 (1974), 133157.Google Scholar