Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-26T08:09:48.987Z Has data issue: false hasContentIssue false

Ideals with sliding depth

Published online by Cambridge University Press:  22 January 2016

J. Herzog
Affiliation:
Fachbereich Mathematik, Universität Essen, D-4300 Essen 1, W. Germany
W.V. Vasconcelos
Affiliation:
Department of Mathematics, Rutgers University, New Brunswick, New Jersey 08903, USA
R. Villarreal
Affiliation:
Department of Mathematics, Rutgers University, New Brunswick, New Jersey 08903, USA
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We study here a class of ideals of a Cohen-Macaulay ring {R, m} somewhat intermediate between complete intersections and general Cohen-Macaulay ideals. Its definition, while a bit technical, rapidly leads to the development of its elementary properties. Let I = (x1xn) = (x) be an ideal of R and denote by H*(x) the homology of the ordinary Koszul complex K*(x) built on the sequence x. It often occurs that the depth of the module Hi i > 0, increases with i (as usual, we set depth (0) = ∞).

Type
Research Article
Copyright
Copyright © Editorial Board of Nagoya Mathematical Journal 1985

References

[ 1 ] Artin, M. and Nagata, M., Residual intersection in Cohen-Macaulay rings, J. Math, Kyoto Univ., 12 (1972), 307323.Google Scholar
[ 2 ] Avramov, L. and Herzog, J., The Koszul algebra of a codimension 2 embedding, Math. Z., 175 (1980), 249280.Google Scholar
[ 3 ] Goto, S., The divisor class group of a certain Krull domain, J. Math. Kyoto Univ., 17 (1977), 4750.Google Scholar
[ 4 ] Grothendieck, A., Théorèmes de dualité pour les faisceaux algébriques cohérents, Sem. Bourbaki, t. 9 (1956/57).Google Scholar
[ 5 ] Hartshorne, R., Complete intersections and connectedness, Amer. J. Math., 84 (1962), 497508.Google Scholar
[ 6 ] Hartshorne, R. and Ogus, A., On the factoriality of local rings of small embedding codimension, Comm. Algebra, 1 (1974), 415437.Google Scholar
[ 7 ] Herzog, J., Simisg, A. and Vasconcelos, W. V., Approximation complexes of blowing-up rings. I, J. Algebra, 74 (1982), 466493.CrossRefGoogle Scholar
[ 8 ] Herzog, J., Simis, A. and Vasconcelos, W. V., Approximation complexes of blowing-up rings. II, J. Algebra, 82 (1983), 5383.CrossRefGoogle Scholar
[ 9 ] Herzog, J., Simis, A. and Vasconcelos, W. V., On the arithmetic and homology of algebras of linear type, Trans. Amer. Math. Soc, 283 (1984), 661683.Google Scholar
[10] Huneke, C., Linkage and the Koszul homology of ideals, Amer. J. Math., 104 (1982), 10431062.Google Scholar
[11] Huneke, C., Strongly Cohen-Macaulay schemes and residual intersections, Trans. Amer. Math. Soc, 277 (1983), 739763.Google Scholar
[12] Józefiak, T., Ideals generated by minors of a symmetric matrix, Comment. Math. Helv., 53 (1978), 595607.Google Scholar
[13] Matsumura, H., Commutative Algebra, Benjamin-Cummings, New York, 1980.Google Scholar
[14] Serre, J.-P., Sur les modules projectifs, Sem. Dubreil-Pisot, 1960/61, exposé 2.Google Scholar
[15] Simis, A. and Vasconcelos, W. V., The syzygies of the conormal module, Amer. J. Math., 103 (1981), 203224.CrossRefGoogle Scholar
[16] Simis, A. and Vasconcelos, W. V., On the dimension and integrality of symmetric algebras, Math. Z., 177 (1981), 341358.CrossRefGoogle Scholar