Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-10T17:08:28.020Z Has data issue: false hasContentIssue false

Isoparametric hypersurfaces with four principal curvatures, II

Published online by Cambridge University Press:  11 January 2016

Quo-Shin Chi*
Affiliation:
Department of Mathematics, Washington University, St. Louis, Missouri, USAchi@math.wustl.edu
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this sequel to an earlier article, employing more commutative algebra than previously, we show that an isoparametric hypersurface with four principal curvatures and multiplicities (3,4) in S15 is one constructed by Ozeki and Takeuchi and Ferus, Karcher, and Münzner, referred to collectively as of OT-FKM type. In fact, this new approach also gives a considerably simpler proof, both structurally and technically, that an isoparametric hypersurface with four principal curvatures in spheres with the multiplicity constraint m2 2m1 -1 is of OT-FKM type, which left unsettled exactly the four anomalous multiplicity pairs (4,5),(3,4),(7,8), and (6, 9), where the last three are closely tied, respectively, with the quaternion algebra, the octonion algebra, and the complexified octonion algebra, whereas the first stands alone in that it cannot be of OT-FKM type. A by-product of this new approach is that we see that Condition B, introduced by Ozeki and Takeuchi in their construction of inhomogeneous isoparametric hypersurfaces, naturally arises. The cases for the multiplicity pairs (4,5), (6, 9), and (7,8) remain open now.

Keywords

Type
Research Article
Copyright
Copyright © Editorial Board of Nagoya Mathematical Journal 2011

References

[1] Abresch, U., Isoparametric hypersurfaces with four or six distinct principal curvatures, Math. Ann. 264 (1983), 283302.Google Scholar
[2] Cartan, E., Familles de surfaces isoparamétriques dans les espaces à courbure constante, Ann. Mat. Pura Appl. (4) 17 (1938), 177191.Google Scholar
[3] Cartan, E., Sur des familles remarquables d’hypersurfaces isoparamétriques dans les espaces sphériques, Math. Z. 45 (1939), 335367.Google Scholar
[4] Cartan, E., Sur quelque familles remarquables d’hypersurfaces, C. R. Congr. Math. Liège 1939, 3041.Google Scholar
[5] Cartan, E., Sur des familles d’hypersurfaces isoparamétriques des espaces sphériques à 5 et à 9 dimensions, Rev. Univ. Tucuman Ser. A 1 (1940), 522.Google Scholar
[6] Cecil, T. E., Chi, Q.-S., and Jensen, G. R., Isoparametric hypersurfaces with four principal curvatures, Ann. of Math. (2) 166 (2007), 176.CrossRefGoogle Scholar
[7] Chi, Q.-S., Isoparametric hypersurfaces with four principal curvatures revisited, Nagoya Math. J. 193 (2009), 129154.Google Scholar
[8] Chi, Q.-S., A new look at condition A, preprint, to appear in Osaka J. Math, arXiv:0907.0377v1[math.DG]Google Scholar
[9] Dorfmeister, J. and Neher, E., Isoparametric triple systems of algebra type, Osaka J. Math. 20 (1983), 145175.Google Scholar
[10] Dorfmeister, J. and Neher, E., Isoparametric hypersurfaces, case g = 6,m= 1, Comm. Algebra 13 (1985), 22992368.CrossRefGoogle Scholar
[11] Ferapontov, E. V., Isoparametric hypersurfaces in spheres, integrable nondiagonalizable systems of hydrodynamic type, and N-wave systems, Differential Geom. Appl. 35 (1995), 335369.Google Scholar
[12] Ferus, D., Karcher, H., and Münzner, H.-F., Cliffordalgebren und neue isoparametrische Hyperflächen, Math. Z. 177 (1981), 479502.CrossRefGoogle Scholar
[13] Kunz, E., Introduction to Commutative Algebra and Algebraic Geometry, Birkhäuser, Boston, 1985.Google Scholar
[14] Laura, E., Sopra la propagazione di onde in un mezzo indefinito, Scritti matematici offerti ad Enrico D’Ovidio 1918, 253278.Google Scholar
[15] Levi-Civita, T., Famiglie di superficie isoparametrische nell’ordinario spacio euclideo, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 26 (1937), 355362.Google Scholar
[16] Miyaoka, R., The Dorfmeister-Neher theorem on isoparametric hypersurfaces, Osaka J. Math. 46 (2009), 695715.Google Scholar
[17] Miyaoka, R., Isoparametric hypersurfaces with (g, m) = (6,2), preprint, 2009.Google Scholar
[18] Münzner, H.-F., Isoparametrische Hyperflächen in Sphären, I, Math. Ann. 251 (1980), 5771; II, 256 (1981), 215232.Google Scholar
[19] Ozeki, H. and Takeuchi, M., On some types of isoparametric hypersurfaces in spheres, I, Tohoku Math. J. (2) 27 (1975), 515559; II, 28 (1976), 755.CrossRefGoogle Scholar
[20] Segre, B., Una Proprietá caratteristixca di tre sistemi ∞1 di superficie, Atti Accad. Sci. Torino Cl. Sci. Fis. Mat. Natur. 29 (1924), 666671.Google Scholar
[21] Segre, B., Famiglie di ipersuperficie isoparametrische negli spazi euclidei ad un qualunque numero di demesioni, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 27 (1938), 203207.Google Scholar
[22] Somigliana, C., Sulle relazione fra il principio di Huygens e l’ottica geometrica, Atti.Accad. Sci. Torino Cl. Sci. Fis. Mat. Natur. 24 (19181919), 974979.Google Scholar
[23] Stolz, S., Multiplicities of Dupin hypersurfaces, Invent. Math. 138 (1999), 253279.Google Scholar