Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-27T17:58:50.976Z Has data issue: false hasContentIssue false

La balayabilité au sens fort des noyau-fonctions continues du potentiel

Published online by Cambridge University Press:  22 January 2016

Isao Higuchi*
Affiliation:
Départment de Mathématics, Institut de Technologie d’Aichi, Yakusa-Cho, Toyota 470-03, Japon
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Soient X un espace localement compact et non-compact à base dénombrable, G une noyau-fonction continue sur X et M (resp. MK) l’ensemble des toutes mesures de Radon positives sur X (resp. des toutes mesures de Radon positives sur X à support compact).

Type
Research Article
Copyright
Copyright © Editorial Board of Nagoya Mathematical Journal 1987

References

[ 1 ] Choquet, G. et Deny, J., Noyaux de convolution et balayage sur tout ouvert, Lecture Notes in Math., 404 (1971), 60112, Springer-Verlag.Google Scholar
[ 2 ] Durier, R., Sur les noyaux-fonctions en théorie du potentiel, Rend. Circ. Mat. Palermo, (2), 18 (1969), 113189.Google Scholar
[ 3 ] Higuchi, I., Duality of domination principle for non-symmetric lower semi-continuous function-kernels, Hiroshima Math. J., 5 (1975), 551559.Google Scholar
[ 4 ] Higuchi, I., Régularité et propriété de convergence dominée des potentiels d’un noyaufonction non-symétrique, Séminaire de Théorie du Potentiel Paris, No. 6, Lecture Notes in Math., 906 (1982), 158202, Springer-Verlag.Google Scholar
[ 5 ] Higuchi, I., Existence de résolvantes associées à un noyau vérifiant le principe de domination, ibid., No. 6 (1982), 203224.Google Scholar
[ 6 ] Higuchi, I. et Itô, M., On the theorems of Kishi for a continuous function-kernel, Nagoya Math. J., 53 (1974), 127135.Google Scholar
[ 7 ] Itô, M., Sur le principe relatif de domination pour les noyaux de convolution, Hiroshima Math. J., 5 (1975), 293350.Google Scholar
[ 8 ] Itô, M., Positive eigen elements for an infinitesimal generator of a diffusion semi-group and their integral representations, Potential Theory Copenhagen 1979, Lecture Notes in Math., 787 (1979), 163184.Google Scholar
[9] Itô, M., On weakly regular Hunt diffusion kernels, Hokkaido Math. J., 23 (1981), Sp., 303335.Google Scholar
[10] Kishi, M., Inferior limit of a sequence of potentials, Proc. Japan Acad., 33 (1957), 314319.Google Scholar
[11] Kishi, M., Unicity principles in the potential theory, Osaka Math. J., 13 (1961), 4174.Google Scholar
[12] Kishi, M., Maximum principles in the potential theory, Nagoya Math. J., 23 (1963), 165187.CrossRefGoogle Scholar
[13] Watanabe, H., A decomposition of continuous function-kernels, à paraître.Google Scholar