Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-28T02:57:44.684Z Has data issue: false hasContentIssue false

Lemma on logarithmic derivatives and holomorphic curves in algebraic varieties1)

Published online by Cambridge University Press:  22 January 2016

Junjiro Noguchi*
Affiliation:
Department of Mathematics, College of General Education, Osaka University
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Nevanlinna’s lemma on logarithmic derivatives played an essential role in the proof of the second main theorem for meromorphic functions on the complex plane C (cf., e.g., [17]). In [19, Lemma 2.3] it was generalized for entire holomorphic curves f: C → M in a compact complex manifold M (Lemma 2.3 in [19] is still valid for non-Kähler M). Here we call, in general, a holomorphic mapping from a domain of C or a Riemann surface into M a holomorphic curve in M, and sometimes use it in the sense of its image if no confusion occurs. Applying the above generalized lemma on logarithmic derivatives to holomorphic curves f: CV in a complex projective algebraic smooth variety V and making use of Ochiai [22, Theorem A], we had an inequality of the second main theorem type for f and divisors on V (see [19, Main Theorem] and [20]). Other generalizations of Nevanlinna’s lemma on logarithmic derivatives were obtained by Nevanlinna [16], Griffiths-King [10, § 9] and Vitter [23].

Type
Research Article
Copyright
Copyright © Editorial Board of Nagoya Mathematical Journal 1981

References

[1] Bloch, A., Sur les systèmes de fonctions holomorphes à variétés linéaires lacunaires, Ann. Sci. École Norm. Sup., 43 (1926), 309362.Google Scholar
[2] Bloch, A., Sur les systèmes de fonctions uniformes satisfaisant à l’équation d’une variété algébrique dont l’irrégularité dépasse la dimension, J. Math. Pures Appl., 5 (1926), 1966.Google Scholar
[3] Fujimoto, H., Extensions of the big Picard’s theorem, Tôhoku Math. J., 24 (1972), 415422.Google Scholar
[4] Fujimoto, H., Families of holomorphic maps into the projective space omitting some hyper-planes, J. Math. Soc. Japan, 25 (1973), 235249.Google Scholar
[5] Fujimoto, H., On meromorphic maps into the complex projective space, J. Math. Soc. Japan, 26 (1974), 272288.Google Scholar
[6] Grauert, H. and Reckziegel, H., Hermitesche Metriken und normale Familien holomorpher Abbildungen, Math. Z., 89 (1965), 108125.Google Scholar
[7] Green, M., Holomorphic maps into complex projective space omitting hyperplanes, Trans. Amer. Math. Soc., 169 (1972), 89103.CrossRefGoogle Scholar
[8] Green, M., Some Picard theorems for holomorphic maps to algebraic varieties, Amer. J. Math., 97 (1975), 4375.Google Scholar
[9] Green, M., The hyperbolicity of the complement of 2n+l hyperplanes in general position in P”, and related results, Proc. Amer. Math. Soc., 66 (1977), 103113.Google Scholar
[10] Griffiths, P. and King, J., Nevanlinna theory and holomorphic mappings betweenalgebraic varieties, Acta Math., 130 (1973), 145220.Google Scholar
[11] Iitaka, S., Logarithmic forms of algebraic varieties, J. Fac. Sci. Univ. Tokyo Sect. IA, 23 (1976), 525544.Google Scholar
[12] Iitaka, S., On logarithmic Kodaira dimension of algebraic varieties, Complex Analysis and Algebraic Geometry, pp. 175189, Iwanami, Tokyo, 1977.CrossRefGoogle Scholar
[13] Kawamata, Y., On Bloch’s conjecture, Invent. Math., 57 (1980), 97100.Google Scholar
[14] Kobayashi, S., Hyperbolic Manifolds and Holomorphic Mappings, Pure and Appl. Math., 2, Dekker, New York, 1970.Google Scholar
[15] Kobayashi, S., Intrinsic distances, measures and geometric function theory, Bull. Amer. Math. Soc., 82 (1976), 357416.CrossRefGoogle Scholar
[16] Nevanlinna, R., Einige Eindeutigkeitssátze in der Théorie der meromorphen Funktionen, Acta Math., 48 (1926), 367391.Google Scholar
[17] Nevanlinna, R., Le Théorème de Picard-Borei et la théorie des fonctions méromorphes, Gauthier-Villars, Paris, 1939.Google Scholar
[18] Noguchi, J., Holomorphic mappings into closed Riemann surfaces, Hiroshima Math. J., 6 (1976), 281291.Google Scholar
[19] Noguchi, J., Holomorphic curves in algebraic varieties, Hiroshima Math. J., 7 (1977), 833853.Google Scholar
[20] Noguchi, J., Supplement to “Holomorphic curves in algebraic varieties”, Hiroshima Math. J., 10 (1980), 229231.Google Scholar
[21] Noguchi, J., Rigidity of holomorphic curves in some surfaces of hyperbolic type, unpublished notes.Google Scholar
[22] Ochiai, T., On holomorphic curves in algebraic varieties with ample irregularity, Invent. Math., 43 (1977), 8396.CrossRefGoogle Scholar
[23] Vitter, A. L., The lemma of the logarithmic derivative in several complex variables, Duke Math. J., 44 (1977), 89104.Google Scholar
[24] Weil, A., Introduction à l’Etude des Variétés kählériennes, Hermann, Paris, 1958.Google Scholar