Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-26T06:18:56.347Z Has data issue: false hasContentIssue false

The moduli space of bilevel-6 abelian surfaces

Published online by Cambridge University Press:  22 January 2016

G. K. Sankaran
Affiliation:
Department of Mathematical Sciences, University of Bath, Bath BA2 7AY, England, gks@maths.bath.ac.uk
J. G. Spandaw
Affiliation:
Institut für Mathematik, Universität Hannover, Postfach 6009, D-30060 Hannover, Germany, spandaw@math.uni-hannover.de
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We show that the moduli space of abelian surfaces with polarisation of type (1,6) and a bilevel structure has positive Kodaira dimension and indeed pg ≥ 3. To do this we show that three of the Siegel cusp forms with character for the paramodular symplectic group constructed by Gritsenko and Nikulin are cusp forms without character for the modular group associated to this moduli problem. We then calculate the divisors of the corresponding differential forms, using information about the fixed loci of elements of the paramodular group previously obtained by Brasch.

Keywords

Type
Research Article
Copyright
Copyright © Editorial Board of Nagoya Mathematical Journal 2002

References

[SC] Ash, A., Mumford, D., Rapoport, M. and Tai, Y., Smooth Compactification of Locally Symmetric Varieties, Math. Sci. Press, Brookline, Mass, 1975.Google Scholar
[Br] Brasch, H.-J., Branch points in moduli spaces of certain abelian surfaces, Abelian Varieties, Egloffstein 1993, de Gruyter, Berlin (1995), pp. 2754.Google Scholar
[Bo] Borisov, A. L., A finiteness theorem for subgroups of Sp(4, ℤ), Algebraic geometry, 9, J. Math. Sci. (New York), 94 (1999), 10731099.Google Scholar
[FS] Friedland, M. and Sankaran, G. K., Das Titsgebäude von Siegelschen Modulgruppen vom Geschlecht 2, Math. Abh. Sem. Univ. Hamburg, 71 (2001), 4968.Google Scholar
[Fr] Freitag, E., Siegelsche Modulfunktionen, Grundlehren der mathematischen Wis-senschaften Bd. 254, Springer-Verlag, Berlin, 1983.Google Scholar
[vdG] van der Geer, G., Hilbert Modular Surfaces, Ergebnisse der Mathematik und ihrer Grenzgebiete Bd. 16, Springer-Verlag, Berlin-New York, 1988.Google Scholar
[Gr] Gritsenko, V., Irrationality of the moduli spaces of polarized abelian surfaces, Abelian Varieties, Egloffstein 1993, de Gruyter, Berlin (1995), pp. 6384.Google Scholar
[GH1] Gritsenko, V. and Hulek, K., Minimal Siegel modular threefolds, Math. Proc. Cambridge Philos. Soc., 123 (1998), 461485.Google Scholar
[GH2] Gritsenko, V. and Hulek, K., The modular form of the Barth-Nieto quintic, Internat. Math. Res. Notices, 17 (1999), 915937.Google Scholar
[GN] Gritsenko, V. and Nikulin, V., Automorphic forms and Lorentzian Kac-Moody Algebras II, Internat. J. Math., 9 (1998), 201275.Google Scholar
[HKW] Hulek, K., Kahn, C. and Weintraub, S., Moduli spaces of abelian surfaces: Compactification, degenerations and theta functions, de Gruyter, 1993.Google Scholar
[Mu] Mukai, S., Moduli of abelian surfaces, and regular polyhedral groups, Moduli of algebraic varieties and the monster, Sapporo 1999 (Nakamura, I., ed.), pp. 6874.Google Scholar
[Sa] Sankaran, K. G., Abelian surfaces with odd bilevel structure, preprint 2002, math.AG/0209192.Google Scholar
[Ue] Ueno, K., On fibre spaces of normally polarized abelian varieties of dimension 2. II. Singular fibres of the first kind, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 19 (1972), 163199.Google Scholar