Published online by Cambridge University Press: 22 January 2016
This paper is concerned with mod p Morita-Mumford classes of the mapping class group Γg of a closed oriented surface of genus g ≥ 2, especially triviality and nontriviality of them. It is proved that is nilpotent if n ≡ − 1 (mod p − 1), while the stable mod p Morita-Mumford class is proved to be nontrivial and not nilpotent if n ≢ −1 (mod p − 1). With these results in mind, we conjecture that vanishes whenever n ≡ − 1 (mod p − 1), and obtain a few pieces of supporting evidence.