Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-13T06:03:20.720Z Has data issue: false hasContentIssue false

On classification of ℚ-fano 3-folds of Gorenstein index 2. II

Published online by Cambridge University Press:  22 January 2016

Hiromichi Takagi*
Affiliation:
RIMS, Kyoto University, Kitashirakawa Sakyo-ku Kyoto, 606-8502, Japan, takagi@kurims.kyoto-u.ac.jp
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In the previous paper, we obtained a list of numerical possibilities of ℚ-Fano 3-folds X with Pic X = ℤ(−2KX) and h0(−KX) ≥ 4 containing index 2 points P such that (X, P) ≃ ({xy + z2 + ua = 0}/ℤ2(1, 1, 1, 0), o) for some a ∈ ℕ. Moreover we showed that such an X is birational to a simpler Mori fiber space. In this paper, we prove their existence except for a few cases by constructing a Mori fiber space with desired properties and reconstructing X from it.

Keywords

Type
Research Article
Copyright
Copyright © Editorial Board of Nagoya Mathematical Journal 2002

References

[Amb99] Ambro, F., Ladders on Fano varieties, J. Math. Sci., 94 (1999), 11261135.CrossRefGoogle Scholar
[Gro68] Grothendieck, A., Cohomologie Local des Faisceaux Cohérent et Théorème de Lefschetz Locaux et Globaux - SGA2, North Holland, 1968.Google Scholar
[KM92] Kollár, J. and Mori, S., Classification of three dimensional flips, J. of Amer. Math. Soc., 5 (1992), 533703.CrossRefGoogle Scholar
[KMM87] Kawamata, Y., Matsuda, K., and Matsuki, K., Introduction to the minimal model problem, Adv. St. Pure Math., vol. 10 (1987), pp. 287360.Google Scholar
[Kod63] Kodaira, K., On stability of compact submanifolds of complex manifolds, Amer. J. Math., 85 (1963), 7994.CrossRefGoogle Scholar
[Mel99] Mella, M., Existence of good divisors on Mukai varieties, J. Alg. Geom., 8 (1999), 197206.Google Scholar
[Min99] Minagawa, T., Global smoothing of singular weak Fano 3-folds, preprint (1999).Google Scholar
[Min01] Minagawa, T., Deformations of weak Fano 3-folds with only terminal singularities, Osaka. J. Math., 38 (2001), no. 3, 533540.Google Scholar
[MM81] Mori, S. and Mukai, S., Classification of Fano 3-folds with b2 ≥ 2, Manuscripta Math., 36 (1981), 147162.CrossRefGoogle Scholar
[MM83] Mori, S. and Mukai, S., On Fano 3-folds with b2 ≥ 2, Algebraic and Analytic Varieties, Adv. Stud. in Pure Math., vol. 1 (1983), pp. 101129.CrossRefGoogle Scholar
[MM85] Mori, S. and Mukai, S., Classification of Fano 3-folds with b2 ≥ 2, I, Algebraic and Topological Theories, 1985, to the memory of Dr. Takehiko MIYATA, pp. 496545.Google Scholar
[Mor82] Mori, S., Threefolds whose canonical bundles are not numerically effective, Ann. of Math., 116 (1982), 133176.CrossRefGoogle Scholar
[Muk89] Mukai, S., Biregular classification of Fano threefolds and Fano manifolds of coindex 3, Proc. Nat’l. Acad. Sci. USA, 86 (1989), 30003002.CrossRefGoogle Scholar
[Muk92] Mukai, S., Fano 3-folds, London Math. Soc. Lecture Notes, vol. 179, Cambridge Univ. Press (1992), pp. 255263.Google Scholar
[Muk93] Mukai, S., Curves and Grassmannians, Algebraic Geometry and Related Topics, the Proceedings of the International Symposium, Inchoen, Republic of Korea, International Press (1993), pp. 1940.Google Scholar
[Muk95] Mukai, S., New development of the theory of Fano threefolds: Vector bundle method and moduli problem, in Japanese, Sugaku, 47 (1995), 125144.Google Scholar
[Nam97] Namikawa, Y., Smoothing Fano 3-folds, J. Alg. Geom., 6 (1997), 307324.Google Scholar
[Reide88] Reider, I., Vector bundles of rank 2 and linear systems on algebraic surfaces, Ann. of Math., 127 (1988), 309316.CrossRefGoogle Scholar
[Reid83] Reid, M., Projective morphisms according to Kawamata, preprint (1983); available at http://www.maths.warwick.ac.uk/∼miles/3folds/.Google Scholar
[Reid87a] Reid, M., The moduli space of 3-folds with K ≡ 0 may nevertheless be irreducible, Math. Ann., 278 (1987), 329334.CrossRefGoogle Scholar
[Reid87b] Reid, M., Young person’s guide to canonical singularities, Algebraic Geometry, Bowdoin, 1985, Proc. Symp. Pure Math., vol. 46 (1987), pp. 345414.Google Scholar
[Reid90] Reid, M., Infinitesimal view of extending a hyperplane section — deformation theory and computer algebra, Lecture Notes in Math., vol. 1417, Springer-Verlag, Berlin-New York (1990), pp. 214286.Google Scholar
[Reid94] Reid, M., Nonnormal del Pezzo surface, Publ. RIMS Kyoto Univ., 30 (1994), 695728.CrossRefGoogle Scholar
[San95] Sano, T., On classification of non-Gorenstein ℚ-Fano 3-folds of Fano index 1, J. Math. Soc. Japan, 47 (1995), no. 2, 369380.CrossRefGoogle Scholar
[San96] Sano, T., Classification of non-Gorenstein ℚ-Fano d-folds of Fano index greater than d − 2, Nagoya Math. J., 142 (1996), 133143.CrossRefGoogle Scholar
[Sho79a] Shokurov, V. V., The existence of a straight line on Fano 3-folds, Izv. Akad. Nauk SSSR Ser. Mat, 43 (1979), 921963; English transl. in Math. USSR Izv. 15 (1980), 173209.Google Scholar
[Sho79b] Shokurov, V. V., Smoothness of the anticanonical divisor on a Fano 3-folds, Math. USSR. Izvestija, 43 (1979), 430441; English transl. in Math. USSR Izv. 14 (1980) 395405.Google Scholar
[Taka02] Takagi, H., On classification of ℚ-Fano 3-folds of Gorenstein index 2. I, Nagoya Math. Journal, 167 (2002), 117155.CrossRefGoogle Scholar
[Take89] Takeuchi, K., Some birational maps of Fano 3-folds, Compositio Math., 71 (1989), 265283.Google Scholar
[Take96] Takeuchi, K., Del Pezzo fiber spaces whose total spaces are weak Fano 3-folds, in Japanese, Proceedings, Hodge Theory and Algebraic Geometry, 1995 in Kanazawa Univ. (1996), pp. 8495.Google Scholar
[Take99] Takeuchi, K., Weak Fano 3-folds with del Pezzo fibration, preprint (1999).Google Scholar