Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-10T13:23:18.843Z Has data issue: false hasContentIssue false

ON ORDINARY ENRIQUES SURFACES IN POSITIVE CHARACTERISTIC

Published online by Cambridge University Press:  22 December 2020

ROBERTO LAFACE
Affiliation:
Technische Universität München, Zentrum Mathematik - M11 Boltzmannstraße 3 85748Garching bei Münchenlaface@ma.tum.de
SOFIA TIRABASSI*
Affiliation:
Stockholm University and University of Bergen Stockholm Univeristy, Kräftriket, SE-106 91StockholmSweden

Abstract

We give a notion of ordinary Enriques surfaces and their canonical lifts in any positive characteristic, and we prove Torelli-type results for this class of Enriques surfaces.

Type
Article
Copyright
2020 The Authors. The publishing rights in this article are licenced to Foundation Nagoya Mathematical Journal under an exclusive license

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Artin, M. F. and Mazur, B., Formal groups arising from algebraic varieties , Ann. Sci. l’École Normale Supérieure, 10 (1977), no. 1, 87131.CrossRefGoogle Scholar
Barth, W. P., Hulek, K., Peters, C. A. M., and Van de Ven, A., Compact complex surfaces, volume 4 of Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics] . 2nd ed., Springer-Verlag, Berlin, 2004.Google Scholar
Cossec, F. R. and Dolgachev, I. V., Enriques Surfaces I, volume 76 of Progr. Math. Birkhäuser Boston, Inc., Boston, MA, 1989.CrossRefGoogle Scholar
Crew, R. M., Etale $p$ -covers in characteristic $p$ , Compos. Math. 52 (1984), no. 1, 3145.Google Scholar
Jang, J., Néron-Severi group preserving lifting of K3 surfaces and applications , Math. Res. Lett. 22 (2015), no. 3, 789802.CrossRefGoogle Scholar
Kaushal Srivastava, T., On derived equivalences of k3 surfaces in positive characteristic, Documenta matematica 24 1135–1177, 2019. preprint available at arXiv:1809.08970.Google Scholar
Lieblich, M. and Maulik, D., A note on the cone conjecture for K3 surfaces in positive characteristic. Mathematical Research Letters 25 (6), 2018, pp 1879–1891. Preprint available at arXiv:1102.3377.CrossRefGoogle Scholar
Matsusaka, T. and Mumford, D., Two fundamental theorems on deformations of polarized varieties , Amer. J. Math. 86 (1964), 668684.CrossRefGoogle Scholar
Nygaard, N. O., The Tate conjecture for ordinary $K3$ surfaces over finite fields , Invent. Math. 74 (1983), no. 2, 213237.CrossRefGoogle Scholar
Nygaard, N. O., The Torelli theorem for ordinary K3 surfaces over finite fields. In Arithmetic and Geometry, Vol. I, volume 35 of Progr. Math., Birkhäuser Boston, Boston, MA, 1983, 267276.CrossRefGoogle Scholar
Ohashi, H., On the number of Enriques quotients of a $K3$ surface, Publ. Res. Inst. Math. Sci. 43 (2007), no. 1, 181200.CrossRefGoogle Scholar
The Stacks project authors. The stacks project, 2019. https://stacks.math.columbia.edu.Google Scholar
Taelman, L., Ordinary K3 surfaces over a finite field. J. Reine Angew. Math 2020(161) pp 141–161. (2020).CrossRefGoogle Scholar
Yu, J. D., Special lifts of ordinary k3 surfaces and applications , Pure Appl. Math. Quart. 8 (2012), no. 3, 803822.CrossRefGoogle Scholar