Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-13T13:48:21.722Z Has data issue: false hasContentIssue false

On p-adic Artin L-functions

Published online by Cambridge University Press:  22 January 2016

Ralph Greenberg*
Affiliation:
Department of Mathematics, University of Washington Seattle, Washington 98195, USA
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this paper we will discuss p-adic Artin L-functions. The existence of these functions is a simple consequence of a theorem of Deligne and Ribet [4]. One can formulate a “p-adic Artin conjecture” for these functions. Our primary purpose here is to relate this conjecture to the “main conjecture” discussed by Coates in [3]. We will describe the precise formulations of these conjectures that we will use later. Our main result will be that in fact the main conjecture implies the p-adic Artin conjecture.

Type
Research Article
Copyright
Copyright © Editorial Board of Nagoya Mathematical Journal 1989

References

[ 1 ] Barsky, D., Fonctions Zeta p-adiques d’une Classe de Rayon des Corps de Nombres Totalement-reels, Group d’etude d’analyse ultrametrique (197778).Google Scholar
[ 2 ] Cassou-Nogues, P., Valeurs aux entieres negatif des fonctions zeta et fonctions zeta p-adiques, preprint.Google Scholar
[ 3 ] Coates, J., p-adic L-functions and Iwasawa’s theory, Alg. No. Theory, Frohlich, A., ed., Academic Press 1977.Google Scholar
[ 4 ] Deligne, P. and Ribet, K., Values of abelian L-functions at negative integers over totally real fields, Invent. Math., 59 (1980), 227286.CrossRefGoogle Scholar
[ 5 ] Greenberg, R., On p-adic L-functions and cyclotomic fields, Nagoya Math. J., 56 (1974), 6177.CrossRefGoogle Scholar
[ 6 ] Greenberg, R., On p-adic L-functions and cyclotomic fields II, Nagoya Math. J., 67 (1977), 139158.CrossRefGoogle Scholar
[ 7 ] Gross, B., On the behavior of p-adic L-functions at s = 0, preprint.Google Scholar
[ 8 ] Iwasawa, K., Lectures on p-adic L-functions, Ann. Math. Studies 74, Princeton University Press, 1972.CrossRefGoogle Scholar
[ 9 ] Iwasawa, K., On Zl-extensions of algebraic numbers fields, Ann. of Math., 98 (1973), 246326.CrossRefGoogle Scholar
[10] Iwasawa, K., On p-adic representations associated with Zp-extensions, preprint.Google Scholar
[11] Ribet, K., Report on p-adic L-functions over totally real fields, Asterisque, 61 (1979), 177192.Google Scholar