No CrossRef data available.
Article contents
On Ramified Riemann Domains
Published online by Cambridge University Press: 22 January 2016
Extract
Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
Let ϕ be a holomorphic mapping of an n-dimensional analytic space E into Cn. If ϕ is non-degenerate at every point of E, we call the pair (E, ϕ) a Riemann domain. The notion of a Riemann domain is a generalization of the notion of a concrete Riemann surface. A Riemann domain (E, ϕ) is said to be unramified if ϕ is a local homeomorphism, and to be ramified if otherwise.
- Type
- Research Article
- Information
- Copyright
- Copyright © Editorial Board of Nagoya Mathematical Journal 1959
References
[ 1 ]
Car tan, H. and Thullen, P.: Zur Theorie der Singularitáten der Funktionen mehrerer komplexer Veränderlichen, Math. Ann. 106 (1932), pp. 617–647.Google Scholar
[ 2 ]
Behnke arid, H.
Thullen, P.: Theorie der Funktionen mehrerer komplexer Veränderlichen (1934).Google Scholar
[ 3 ]
Behnke, H. and Stein, K.: Konvergente Folgen von Regularitätsbereichen und die Meromorphiekonvexitat, Math. Ann. 116 (1939), pp. 204–216.Google Scholar
[ 6 ]
Oka, K. : Sur les fonctions de plusieurs variables complexes. IX. Domaines finis sans point critique intérieur, Jap. J. Math. 23 (1953), pp. 97–155.Google Scholar
[ 7 ]
Grauert, H. : Charakterisierung der holomorph vollstandigen komplexen Räume, Math. Ann. 129 (1955), pp. 233–259.Google Scholar
[ 8 ]
Grauert, H. and Remmert, R.: Konvexität in der komplexen Analysis, Comment. Math. Helv. 31 (1957), pp. 152–183.Google Scholar
[ 9 ]
Grauert, H. and Remmert, R.: Sur les revêtements analytiques des variété analytiques, Comptes Rendus
85 (1957), pp. 918–921.Google Scholar
[10]
Iwahashi, R. : Domains spred on a complex space, J. Math. Soc. Japan. Vol 9, No. 4 (1957).Google Scholar
[11]
Remmert, R. : Holomorphe und meromorphe Abbildungen komplexer Räume, Math. Ann. 133 (1957).Google Scholar
You have
Access