Article contents
On the central ideal class group of cyclotomic fields
Published online by Cambridge University Press: 22 January 2016
Extract
Let Q be the rational number field, K/Q be a finite Galois extension with the Galois group G, and let CK be the ideal class group of K in the wider sense. We consider CK as a G-module. Denote by I the augmentation ideal of the group ring of G over the ring of rational integers. Then CK/I(CK) is called the central ideal class group of K, which is the maximal factor group of CK on which G acts trivially. A. Fröhlich [3, 41 rationally determined the central ideal class group of a complete Abelian field over Q whose degree is some power of a prime. The proof is based on Theorems 3 and 4 of Fröhlich [2]. D. Garbanati [6] recently gave an algorithm which will produce the l-invariants of the central ideal class group of an Abelian extension over Q for each prime l dividing its order.
- Type
- Research Article
- Information
- Copyright
- Copyright © Editorial Board of Nagoya Mathematical Journal 1979
References
- 1
- Cited by