Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-27T10:50:44.655Z Has data issue: false hasContentIssue false

On the diophantine equation x2py2 = ± 4q and the class number of real subfields of a cyclotomic field*)

Published online by Cambridge University Press:  22 January 2016

Hideo Yokoi*
Affiliation:
Department of Mathematics, College of General Education, Nagoya University, Chikusa-ku, Nagoya 464, Japan
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let H(m) denote the class number of the field where Q is the rational number field and ζm is a primitive m-th root of unity for a positive rational integer m.

Type
Research Article
Copyright
Copyright © Editorial Board of Nagoya Mathematical Journal 1983

Footnotes

*)

This research was partially supported by Grant-in-Aid for Scientific Research Project No. 56540017, Ministry of Education, Japan.

References

[1] Degert, G., Über die Bestimmung der Grundeinheit gewisser reell-quadratiseher Zahlkõrper, Abh. Math. Sem. Univ. Hamburg, 22 (1958), 9297.CrossRefGoogle Scholar
[2] Ankeny, N. C., Chowla, S. and Hasse, H., On the class-number of the maximal real subfield of a cyclotomic field, J. reine angew. Math., 217 (1965), 217220.CrossRefGoogle Scholar
[3] Hasse, H., Über mehrklassige, aber eingeschlechtige reell-quadratische Zahlkõrper, Elemente der Mathematik, 20 (1965), 4972.Google Scholar
[4] Yamaguchi, I., On the class-number of the maximal real subfield of a cyclotomic field, J. reine angew. Math., 272 (1975), 217220.Google Scholar
[5] Lang, S.-D., Note on the class-number of the maximal real subfield of a cyclotomic field, J. reine angew. Math., 290 (1977), 7072.Google Scholar
[6] Takeuchi, H., On the class-number of the maximal real subfield of a cyclotomic field, Canadian J. Math., 33 (1981), 5558.CrossRefGoogle Scholar
[7] Wada, H., A table of ideal class numbers of real quadratic fields, Kōkyūroku in Math., No. 10 (1981), Sophia Univ., Tokyo.Google Scholar