No CrossRef data available.
Article contents
On the distribution (mod 1) of polynomials of a prime variable
Published online by Cambridge University Press: 22 January 2016
Extract
Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
Throughout, ε is any small positive number, θ any real number, n, nj, k, N some positive integers and p, pj any primes. By ‖θ‖ we mean the distance from θ to the nearest integer. Write C(ε), C(ε, k) for positive constants which may depend on the quantities indicated inside the parentheses.
- Type
- Research Article
- Information
- Copyright
- Copyright © Editorial Board of Nagoya Mathematical Journal 1982
References
[ 1 ]
Davenport, H. and Heilbronn, H., On indefinite quadratic forms in five variables, J. London Math. Soc, 21 (1946), 185–193.CrossRefGoogle Scholar
[ 2 ]
Davenport, H. and Roth, K.F., The solubility of certain diophantine inequalities, Mathematika, 2 (1955), 81–96.Google Scholar
[ 3 ]
Davenport, H., On a theorem of Heilbronn, Quart. J. Math. Oxford, (2), 18 (1967), 339–344.Google Scholar
[ 4 ]
Hardy, G.H. and Wright, E.M., An Introduction to the Theory of Numbers, 4th ed. Oxford, 1965.Google Scholar
[ 5 ]
Hartman, S. and Knapowski, S., Bemerkungen über die Bruchteile von pa, Ann. Polon. Math., 3 (1957), 285–287.Google Scholar
[ 6 ]
Heilbronn, H., On the distribution of the sequence n20(modl), Quar Math t. J.. Oxford, 19 (1948), 249–256.Google Scholar
[ 7 ]
Hua, L.K., Additive Theory of Prime Numbers, Translations of Mathematical Monographs Vol. 13, Amer. Math. Soc, Providence, R.I.
1965.Google Scholar
[ 8 ]
Liu, M.C., Approximation by a sum of polynomials involving primes, J. Math. Soc. Japan, 30 (1978), 395–412.CrossRefGoogle Scholar
[ 9 ]
Schmidt, W.M., Small Fractional Parts of Polynomials, Regional Conference Series in Mathematics No. 32, Amer. Math. Soc. Providence, R.I.
1977.Google Scholar
[10]
Schmidt, W.M., On the distribution modulo 1 of the sequence an2 + βn, Canacl. J. Math., 29 (1977), 819–826.Google Scholar
[11]
Vaughan, R.C., On the distribution of ap modulo 1, Mathematika, 24 (1977), 135–141.Google Scholar
[12]
Vinogradov, I.M., Analytischer Beweis des Satzes über die Verteilung der Bruchteile eines ganzen Polynoms, (in Russian), Bull. Acad. Sci. USSR (6), 21 (1927), 567–578.Google Scholar
[13]
Vinogradov, I.M., A new estimate of a trigonometric sum containing primes, (in Russian with English summary), Bull. Acad. Sci. USSR ser. Math., 2 (1938), 3–13.Google Scholar
[14]
Vinogradov, I.M., The Method of Trigonometrical Sums in the Theory of Numbers, New York: Interscience
1954.Google Scholar