Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-27T06:58:00.294Z Has data issue: false hasContentIssue false

On the generalized Teichmüller spaces and differential equations

Published online by Cambridge University Press:  22 January 2016

Akikazu Kuribayashi*
Affiliation:
Department of Mathematics Faculty of Science and Engineering, Chuo University
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

It is well known that for the family F of Riemann surfaces {R(z)} defined by the equations y2 = x(xl)(x — z), zεC — {0,1}, we have one independent abelian differential ω = y−1dx on each R(z) and if we consider z as a parameter on C — {0,1}, the integrals are solutions of the Gauss’s differential equation

Type
Research Article
Copyright
Copyright © Editorial Board of Nagoya Mathematical Journal 1976

References

[1] Ahlfors, L. V.-Bers, L., Riemann’s mapping theorem for variable metrics. Ann. of Math., vol. 72 (1960), 385404.CrossRefGoogle Scholar
[2] Appell, P., Fonctions hypergéométriques et hypersphériques. Gautier-Villars, 1926.Google Scholar
[3] Bers, L., Holomorphic differentials as functions of moduli, Bull. Amer. Math. Soc, vol. 67 (1961), 206210.CrossRefGoogle Scholar
[4] Grauert, H.-Remmert, R., Komplexe Räurne. Math. Ann. Bd. 136 (1958), 245318.CrossRefGoogle Scholar
[5] Kuribayashi, A., On analytic families of compact Riemann surfaces with non-trivial automorphisms. Nagoya Math. J., vol. 28 (1966), 119165.CrossRefGoogle Scholar
[6] Kuribayashi, A., Covering Riemann surfaces and Theta functions. Bull. Facul. Sci. & Eng. Chuo Univ., vol. 15 (1972), 113.Google Scholar
[7] Picard, E., Traité d’analyse II, III, Gautier-Villars, 1925.Google Scholar
[8] Remmert, R., Holomorphe und meromorphe Abbildungen komplexer Räurne. Math. Ann. Bd. 133 (1957), 328370.Google Scholar
[9] Shimura, G., On analytic families of polarized abelian varieties. Ann. of Math., vol. 78 (1963), 149192.CrossRefGoogle Scholar
[10] Shimura, G., On purely transcendental fields of automorphic functions of several variables. Osaka J. Math., vol. 1 (1964), 114.Google Scholar
[11] Siegel, C. L., Ausgewahlte Fragen der Funktionentheorie, II, Göttingen, 1954.Google Scholar