Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-26T07:39:30.131Z Has data issue: false hasContentIssue false

On the Hecke-Landau L-Series

Published online by Cambridge University Press:  22 January 2016

Tikao Tatuzawa*
Affiliation:
Mathematical Institute, Nagoya University
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let k be an algebraic number field of degree n = r1 + 2r2 with r1 real conjugates k(l) (1 ≦ lr1) and r2 pairs of complex conjugates k(m), k(m+r2)) (r1 + 1 ≦ m ≦ r1 + r2). Let o be the integral domain consisting of all integers in k.

Type
Research Article
Copyright
Copyright © Editorial Board of Nagoya Mathematical Journal 1960

References

[1] Hecke, E., Über die L-Funktionen und den Dirichletschen Primzahlsatz für einen beliebigen Zahlkörper, Aus den Nachrichten von der K. Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-physikalische Klasse (1917), 120.Google Scholar
[2] Landau, E., Über Ideale und Primideale in Idealklasse, Mathematische Zeitschrift, 2 (1918), 52154.Google Scholar
[3] Prachar, K., Primzahlverteilung, Springer, 1957.Google Scholar
[4] Siegel, C. L., Über die Klassenzahl quadratischer Zahlkörger, Acta Arithmetica, 1 (1935), 8386.CrossRefGoogle Scholar
[5] Suetuna, Z., Analytic number theory (in Japanese), Iwanami, 1950.Google Scholar