Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-26T08:43:58.506Z Has data issue: false hasContentIssue false

On the length of the powers of systems of parameters in local ring

Published online by Cambridge University Press:  22 January 2016

Nguyen Tu Cuong*
Affiliation:
Institute of Mathematics, P.O. Box 631, Bo Ho, Hanoi, Vietnam
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Throughout this note, A denotes a commutative local Noetherian ring with maximal ideal m and M a finitely generated A-module with dim (M) = d. Let x1, …, xd be a system of parameters (s.o.p. for short) for M and I the ideal of A generated by x1, …, xd.

Type
Research Article
Copyright
Copyright © Editorial Board of Nagoya Mathematical Journal 1990

References

[1] Auslander, M. and Buchsbaum, D. A., Codimension and multiplicity, Ann. Math., 68 (1958), 625657.Google Scholar
[2] Brodmann, M., Kohomologische Eigenschaften von Aufblasungen an lokalen vollständigen Durchschnitten, Habilitationsschrift, Münster 1980.Google Scholar
[3] Cuong, N. T., Trung, N. V. and Schenzel, P., Verallgemeinerte Cohen-Macaulay Moduln, Math. Nachr., 85 (1978), 5773.Google Scholar
[4] Ferrand, D. and Raynaud, M., Fibres formelles d’un anneau local Noetherien, Ann. Sc. Ecole Norm. Sup., 3 (1970), 295311.CrossRefGoogle Scholar
[5] Garcia Roig, J-L and Kirby, D., On the Koszul homology modules for the powers of a multiplicity system, Mathematika, 33 (1986), 96101.CrossRefGoogle Scholar
[6] Schenzel, P., Finiteness of relative Rees ring and Asymptotic Prime Divisor, Math. Nachr., 129 (1986), 123148.CrossRefGoogle Scholar
[7] Serre, J-P., Algèbre locale: Multiplicités, Lecture Notes in Math. No. 11, 1965.Google Scholar
[8] Stückrad, J. and Vogel, W., Eine Verallgemeinerung der Cohen-Macaulay Ringe und Anwendungen auf ein Problem der Multiplizitätstheorie, J. Math. Kyoto Univ., 13 (1973), 513528.Google Scholar
[9] Sharp, R. Y. and Hamieh, M. A., Lengths of certain generalized fraction, J. pure Appl. Algebra, 38 (1985), 323336.Google Scholar
[10] Trung, N. V., Absolutely superficial sequence, Math. Proc. Cambrige Phil. Soc., 93 (1983), 3547.Google Scholar
[11] Trung, N. V., Toward a theory of generalized Cohen Macaulay modules, Nagoya Math. J., 102 (1986), 149.Google Scholar
[12] Cuong, N. T., Generalized Cohen-Macaulay modules with non-Cohen-Macaulay locus of positive dimension, preprint.Google Scholar
[13] Huneke, C., Theory of d-sequenees and powers of ideals, Adv. in Math., 46 (1982), 249279.CrossRefGoogle Scholar