No CrossRef data available.
Article contents
On the theta divisor of SU(r; 1)
Published online by Cambridge University Press: 22 January 2016
Abstract
Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
Let SU(r; 1) be the moduli space of stable vector bundles, on a smooth curve C of genus g ≥ 2, with rank r ≥ 3 and determinant OC(p), p ∈ C; let L be the generalized theta divisor on SU(r; 1). In this paper we prove that the map øL, defined by L, is a morphism and has degree 1.
Keywords
- Type
- Research Article
- Information
- Copyright
- Copyright © Editorial Board of Nagoya Mathematical Journal 2002
References
[A-C-G-H]
Arbarello, E.
Cornalba, M., Griffiths, P.A. and Harris, J., Geometry of Algebraic curves, Springer verlag, Berlin, 1985.Google Scholar
[Be1]
Beauville, A., Fibres de rang 2 sur une courbe, fibre determinant et functions theta, Bull. Soc.Math.France, 116 (1988), 431–448.CrossRefGoogle Scholar
[Be2]
Arbarello, E.
Cornalba, M., Griffiths, P.A. and Harris, J., Fibres de rang 2 sur une courbe, fibre determinant et functions theta II, Bull. Soc. Math.France, 119 (1991), 259–291.Google Scholar
[B]
Brivio, S., On the degeneracy locus of a map of vector bundles on Grassmannian Varieties, Preprint (1999).Google Scholar
[B-V1]
Brivio, S. and Verra, A., The theta divisor of SUC(2)S is very ample if C is not hyperelliptic, Duke Math. J., 82 (1996), 503–552.Google Scholar
[B-V2]
Brivio, S. and Verra, A., On the theta divisor of SU(2,1), Int. J. math., 10, 8 (1998), 925–942.Google Scholar
[D-N]
Drezet, I.M. and Narasimhan, M.S., Groupes de Picard des variétés des modules desfibres semistable sur les courbes algebriques, Invent.Math., 97 (1989), 53–94.CrossRefGoogle Scholar
[D-R]
Desale, U.V. and Ramanan, S., Classificationn of vector bundles of rank two on hyperelliptic curves, Invent. Math., 38 (1976), 161–185.Google Scholar
[I-vG]
zadi, E.I and Geemen, L. van, The tangent space to the moduli space of vector bunldes on a curve and the singular locus of the theta divisor of the Jacobian, Preprint (1997).Google Scholar
[L]
Laszlo, Y., A propos de lespace des modules de fibres de rang 2 sur une courbe, Math. Ann., 299 (1994), 597–608.CrossRefGoogle Scholar
[N-R]
Narasimhan, M.S. and Ramanan, S., Moduli of vector bundles on a compact Riemann surface, Ann.Math., 89 (1969), 19–51.Google Scholar
[N]
Newstead, P.E., Rationality of moduli spaces of vector bundles over an algebraic curve, Math.Ann., 215 (1975), 251–268. Correction, ibidem, 249, (1980), 281–282.Google Scholar
[Ra]
Ramanan, S., The moduli spaces of vector bundles over an algebraic curve, Math. Ann., 200 (1973), 69–84.CrossRefGoogle Scholar
[R]
Raynaud, M., Sections des fibrès vectoriels sur une courbe, Bull.Soc.math. France, 110 (1982), 103–125.Google Scholar
[S]
Seshadri, C.S., Fibrès vectoriels sur les courbes algèbriques, Astèrisque, 96 (1982), 3–50.Google Scholar
You have
Access