Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-13T13:29:05.412Z Has data issue: false hasContentIssue false

Open Riemann Surface with Null Boundary

Published online by Cambridge University Press:  22 January 2016

Kiyoshi Noshiro*
Affiliation:
Mathematical Institute, Nagoya University
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Recently the writer has obtained some results concerning meromorphic or algebroidal functions with the set of essential singularities of capacity zero, with an aid of a theorem of Evans. In the present paper, suggested from recent interesting papers of Sario and Pfluger, the writer will extend his results to single-valued analytic functions defined on open abstract Riemann surfaces with null boundary in the sense of Nevanlinna, using a lemma instead of Evans’ theorem.

Type
Research Article
Copyright
Copyright © Editorial Board of Nagoya Mathematical Journal 1951

References

1) Noshiro, K.: [1] Contributions to the theory of the singularities of analytic functions, Jap. Journ. of Math. 19 (1948), pp, 299327 Google Scholar; [2] Note on the cluster sets of analytic functions, Journ. Math. Soc. Japan, 1 (1950), pp. 275-281; [3] A theorem on the cluster sets of pseudo-analytic functions, Nagoya Math. Journ. 1 (1950), pp. 83-89.

2) Evans, G. C.: Potentials and positively infinite singularities of harmonic functions, Monatshefte fur Math, und Phys. 43 (1936), pp. 419424.CrossRefGoogle Scholar

3) Sario, Leo: [1] Über Riemannsche Flachen mit hebbarem Rand, Ann. Acad, Sci. Fenn. A. 1. 50 (1948), 79 ppGoogle Scholar. [2] Sur les problémes du type des surfaces de Riemann, Comptes Rendus, Paris, 229 (1949), pp. 1109-1111; [3] Questions d’existence au voisinage de la frontiere d’une surface de Riemann, Comptes Rendus, Paris, 230 (1950), pp. 269-271.

4) Pfluger, A.: Über das Anwachsen eindautiger analytischer Funktion auf offenen Riemannschen Flache, Ann. Acad. Sci. Fenn. A. I. 64 (1949), 18 pp.Google Scholar

5) Nevanlinna, R.: Quadratisch integrierbare Differentiale auf einer Riemannschen Mannigfaltigkeit, Ann. Acad. Sci. Fenn. A. I. 1 (1941), 34 pp.Google Scholar

6) For the definition of modulus, cf. Sario: loc. cit. [3]; Pfluger: loc. cit.

7) Cf. Sario: loc. cit. [1], p. 11.

8) Sario stated only the sufficient condition. Cf. loc. cit. [3]; R. Nevanlinna: loe. cit Moreover, Sario remarked that a graph K of finite length can be constructed by a suitable choice of an exhaustion of F, in the case when F is simply connected and of parabolic type. Cf. loc. cit. [2].

9) Z. Yûjôbô reported this result at the annual meeting of the Math. Soc. of Japan in 1948. However, his proof has teen published nowhere. Tsuji, M.: On the behaviour of a meromorphic function in the neighbourhood of a closed set of capacity zero, Proc. Imp. Acad. 18 (1942), pp. 213219.CrossRefGoogle Scholar

10) Gross, W.: Über die Singularitäten analytischer Funktionen, Monatshefte für Math, und Phys. 29 (1918), pp. 147.Google Scholar

11) Evidently the niveau curve CΛ coincides with Γn when λ-rn (n=0, 1],…).

12) Stoïlow, S.: Sur les singularités des fonctions analytiques multiformes dont la surface de Riemann a sa frontière de mesure harmonique nuli, Mathematica, 19 (1943), pp. 126138.Google Scholar

13) Nagai, Y.: On the behaviour of the boundary of Riemann surfaces, II, Proc. Jap. Acad. 26 (1950), pp. 1016 CrossRefGoogle Scholar; Tsuji, M.: Some metrical theorems on Fuchsian groups, Kôdai Math. Sem. Rep. Nos. 4-5 (1950), pp. 8993 CrossRefGoogle Scholar; A. Mori: On Riemann surfaces, on which no bounded harmonic function exists, which will appear in Journ. Math. Soc. Japan.

14) Virtanen, K. I.: Über die Existent von beschränkten harmonischen Funktionen auf offenen Riemannschen Flächen, Ann. Acad. Sci. Fenn. A. I. 75 (1950), 8 pp.Google Scholar

15) Ahlfors, L.: Zur Theorie der Überlagerungsflächen, Acta Math. 65 (1935), pp. 157194.CrossRefGoogle Scholar

16) Cf. Noshiro: loc. cit. [1], p. 307. A. Mori kindly remarked that in the case when <I> has a finite number of sheets, the assertion is directly proved by the fact that a bounded closed set of capacity zero is of linear measure zero.

17) Cf. Noshiro: loc. cit [1], p. 310.

18) Compare with Noshiro: loc. cit. [1], Theorem 3, p. 315 and Theorem 4, p. 327.

19) Pfluger, A.: Sur une propriété de l’application quasi-conforme d’une surface de Riemarn ouverte, Comptes Rendus, Paris, 227 (1948), pp. 2526.Google Scholar