Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-10T16:38:15.592Z Has data issue: false hasContentIssue false

Pointwise multipliers for Campanato spaces on Gauss measure spaces

Published online by Cambridge University Press:  11 January 2016

Liguang Liu
Affiliation:
Department of Mathematics School of Information Renmin University of ChinaBeijing 100872 People’sRepublic of Chinaliuliguang@ruc.edu.cn
Dachun Yang
Affiliation:
School of Mathematical Sciences Beijing Normal University Laboratory of Mathematics and Complex Systems Ministry of EducationBeijing 100875 People’sRepublic of Chinadcyang@bnu.edu.cn
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this paper, the authors characterize pointwise multipliers for Campanato spaces on the Gauss measure space (ℝn,| · |,γ), which includes BMO(γ) as a special case. As applications, several examples of the pointwise multipliers are given. Also, the authors give an example of a nonnegative function in BMO(γ) but not in BLO(γ).

Keywords

Type
Research Article
Copyright
Copyright © Editorial Board of Nagoya Mathematical Journal 2014

References

[1] Carbonaro, A., Mauceri, G. and Meda, S., H1 and BMO for certain locally doubling metric measure spaces, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 8 2009, 543582. MR 2581426.Google Scholar
[2] Carbonaro, A., Mauceri, G. and Meda, S., H1 and BMO for certain locally doubling metric measure spaces of finite measure, Colloq. Math. 118 2010, 1341. MR 2600517. DOI 10.4064/cm118–1-2.Google Scholar
[3] Coifman, R. R. and Weiss, G., Analyse harmonique non-commutative sur certainsespaces homogènes, Lecture Notes in Math. 242, Springer, Berlin, 1971. MR 0499948.CrossRefGoogle Scholar
[4] Coifman, R. R. and Weiss, G., Extensions of Hardy spaces and their use in analysis, Bull. Amer. Math.Soc. (N.S.) 83 1977, 569645. MR 0447954.Google Scholar
[5] Diening, L., Maximal function on Musielak–Orlicz spaces and generalized Lebesgue spaces, Bull. Sci. Math. 129 2005, 657700. MR 2166733. DOI 10.1016/j.bulsci. 2003.10.003.Google Scholar
[6] Fabes, E. B., Gutiérrez, C. E., and Scotto, R., Weak-type estimates for the Riesz transforms associated with the Gaussian measure, Rev. Mat. Iberoam. 10 1994, 229281. MR 1286476. DOI 10.4171/RMI/152.Google Scholar
[7] Forzani, L. and Scotto, R., The higher order Riesz transform for Gaussian measureneed not be weak type (1, 1), Studia Math. 131 1998, 205214. MR 1644460.Google Scholar
[8] Garcí-Cuerva, , Mauceri, G., Sjögren, P., and Torrea, J. L., Higher-order Riesz oper ators for the Ornstein–Uhlenbeck semigroup, Potential Anal. 10 1999, 379407. MR 1698617. DOI 10.1023/A:1008685801945.Google Scholar
[9] García-Cuerva, , Mauceri, G., Sjögren, P., and Torrea, J. L., Spectral multipliers for the Ornstein–Uhlenbeck semigroup, J. Anal. Math. 78 1999, 281305. MR 1714425. DOI 10.1007/BF02791138.Google Scholar
[10] Gutiérrez, C. E., On the Riesz transforms for Gaussian measures, J. Funct. Anal. 120 1994, 107134. MR 1262249. DOI 10.1006/jfan.1994.1026.Google Scholar
[11] Gutiérrez, C. E., Segovia, C., and Torrea, J. L., On higher order Riesz transforms for Gaussian measures, J. Fourier Anal. Appl. 2 1996, 583596. MR 1423529. DOI 10. 1007/s00041–001-4044–1.Google Scholar
[12] Harboure, E., Torrea, J. L., and Viviani, B., Vector-valued extensions of operators related to the Ornstein–Uhlenbeck semigroup, J. Anal. Math. 91 2003, 129. MR 2037400. DOI 10.1007/BF02788780.Google Scholar
[13] Hartmann, A., Pointwise multipliers in Hardy–Orlicz spaces, and interpolation, Math. Scand. 106 2010, 107140. MR 2603465.Google Scholar
[14] Janson, S., On functions with conditions on the mean oscillation, Ark. Mat. 14 1976, 189196. MR 0438030.Google Scholar
[15] Ky, L. D., New Hardy spaces of Musielak–Orlicz type and boundedness of sublinear operators, Integral Equations Operator Theory 78 2014, 115150. MR 3147406. DOI 10.1007/s00020–013-2111-z.Google Scholar
[16] Lerner, A. K., Some remarks on the Hardy–Littlewood maximal function on variable Lp spaces, Math. Z. 251 2005, 509521. MR 2190341. DOI 10.1007/ s00209–005-0818–5.Google Scholar
[17] Lin, H., Nakai, E., and Yang, D., Boundedness of Lusin-area and gλ functions on localized BMO spaces over doubling metric measure spaces, Bull. Sci. Math. 135 2011, 5988. MR 2764953. DOI 10.1016/j.bulsci.2010.03.004.Google Scholar
[18] Liu, L., Sawano, Y., and Yang, D., Morrey-type spaces on the Gauss measure spaces and boundedness of singular integrals, J. Geom. Anal., published electronically 2 October 2012. DOI 10.1007/s12220–012-9362–9.Google Scholar
[19] Liu, L. and Yang, D., BLO spaces associated with the Ornstein–Uhlenbeck operator, Bull. Sci. Math. 132 2008, 633649. MR 2474485. DOI 10.1016/j.bulsci.2008.08. 003.Google Scholar
[20] Maas, J., Neerven, J. van, and Portal, P., Conical square functions and non-tangential maximal functions with respect to the Gaussian measure, Publ. Mat. 55 2011, 313341. MR 2839445. DOI 10.5565/PUBLMAT 55211 03.Google Scholar
[21] Maas, J., Neerven, J. van, and Portal, P.,Whitney coverings and the tent spaces T1,q(γ) for the Gaussian measure, Ark. Mat. 50 2012, 379395. MR 2961328. DOI 10.1007/s11512–010-0143-z.Google Scholar
[22] Maligranda, L. and Nakai, E., Pointwise multipliers of Orlicz spaces, Arch. Math. (Basel) 95 2010, 251256. MR 2719383. DOI 10.1007/s00013–010-0160-y.CrossRefGoogle Scholar
[23] Mauceri, G. and Meda, S., BMO and H1 for the Ornstein-Uhlenbeck operator, J. Funct. Anal. 252 2007, 278313. MR 2357358. DOI 10.1016/j.jfa.2007.06.017.Google Scholar
[24] Mauceri, G., Meda, S., and Sjogren, P., Endpoint estimates for first-order Riesz transforms associated to the Ornstein-Uhlenbeck operator, Rev. Mat. Iberoam. 28 2012, 7791. MR 2904131. DOI 10.4171/RMI/667.Google Scholar
[25] Mauceri, G., Meda, S., and Sjogren, P., A maximal function characterization of the Hardy space for the Gauss mea sure, Proc. Amer. Math. Soc. 141 2013, 16791692. MR 3020855. DOI 10.1090/ S0002–9939-2012–11443-1.Google Scholar
[26] Menärguez, T., Pérez, S., and Soria, F., The Mehler maximal function: A geometric proof of the weak type 1, J. Lond. Math. Soc. (2) 61 2000, 846856. MR 1766109. DOI 10.1112/S0024610700008723.Google Scholar
[27] Nakai, E., Pointwise multipliers for functions of weighted bounded mean oscillation, Studia Math. 105 1993, 105119. MR 1226621.Google Scholar
[28] Nakai, E., Pointwise multipliers on weighted BMO spaces, Studia Math. 125 1997, 3556. MR 1455621.Google Scholar
[29] Nakai, E., A characterization of pointwise multipliers on the Morrey spaces, Sci. Math.Jpn. 3 2000, 445454. MR 1803059.Google Scholar
[30] Nakai, E. and Yabuta, K., Pointwise multipliers for functions of bounded mean oscillation, J. Math. Soc. Japan 37 1985, 207218. MR 0780660. DOI 10.2969/jmsj/ 03720207.Google Scholar
[31] Nakai, E. and Yabuta, K., Pointwise multipliers for functions of weighted bounded mean oscillation on spaces of homogeneous type, Sci. Math. Japon. 46 1997, 1528. MR 1466111.Google Scholar
[32] Pérez, S., The local part and the strong type for operators related to the Gaussian measure, J. Geom. Anal. 11 2001, 491507. MR 1857854. DOI 10.1007/BF02922016.Google Scholar
[33] Pisier, G., “Riesz transforms: A simpler analytic proof of P.-A. Meyer’s inequality” in Séminaire de probabilités, XXII, Lecture Notes in Math. 1321, Springer, Berlin, 1988, 485501. MR 0960544. DOI 10.1007/BFb0084154.Google Scholar
[34] Sjogren, P., “On the maximal function for the Mehler kernel” in Harmonic Analysis (Cortona, 1982), Lecture Notes in Math. 992, Springer, Berlin, 1983, 7382. MR 0729346. DOI 10.1007/BFb0069151.Google Scholar
[35] Sjogren, P., Operators associated with the Hermite semigroup—a survey, J. Fourier Anal. Appl. 3 1997, 813823. MR 1600191. DOI 10.1007/BF02656487.Google Scholar
[36] Spanne, S., Some function spaces defined using the mean oscillation over cubes, Ann. Sc. Norm. Super. Pisa (3) 19 1965, 593608. MR 0190729.Google Scholar
[37] Stegenga, D. A., Bounded Toeplitz operators on H1 and applications of the duality between H1 and the functions of bounded mean oscillation, Amer. J. Math. 98 1976, 573589. MR 0420326.Google Scholar
[38] Urbina, W., On singular integrals with respect to the Gaussian measure, Ann. Sc. Norm. Super. Pisa Cl. Sci. (4) 17 1990, 531567. MR 1093708.Google Scholar
[39] Yabuta, K., Pointwise multipliers of weighted BMO spaces, Proc. Amer. Math. Soc. 117 1993, 737744. MR 1123671. DOI 10.2307/2159136.Google Scholar