Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-26T05:49:44.508Z Has data issue: false hasContentIssue false

Products of pairs of Dehn twists and maximal real Lefschetz fibrations

Published online by Cambridge University Press:  11 January 2016

Alex Degtyarev
Affiliation:
Department of Mathematics, Bilkent University, 06800 Ankara, Turkey, degt@fen.bilkent.edu.tr
Nermin Salepci
Affiliation:
Institut Camille Jordan, 69622 Villeurbanne CEDEX, France, salepci@math.univ-lyon1.fr
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We address the problem of existence and uniqueness of a factorization of a given element of the modular group into a product of two Dehn twists. As a geometric application, we conclude that any maximal real elliptic Lefschetz fibration is algebraic.

Type
Research Article
Copyright
Copyright © Editorial Board of Nagoya Mathematical Journal 2013

References

[1] Arad, Z., Stavi, J., and Herzog, M., “Powers and products of conjugacy classes in groups” in Products of Conjugacy Classes in Groups, Lecture Notes in Math. 1112, Springer, Berlin, 1985, 651. MR 0783068. DOI 10.1007/BFb0072286.Google Scholar
[2] Artin, E., Theory of braids, Ann. of Math. (2) 48 (1947), 101126. MR 0019087.CrossRefGoogle Scholar
[3] Bardakov, V. G., The structure of a group of conjugating automorphisms (in Russian), Algebra Logika 42 (2003), no. 5, 515541, 636; English translation in Algebra Logic 42 (2003), no. 5, 287303. MR 2025714. DOI 10.1023/A:1025913505208.Google Scholar
[4] Bogomolov, F. and Tschinkel, Y., “Monodromy of elliptic surfaces” in Galois Groups and Fundamental Groups, Math. Sci. Res. Inst. Publ. 41, Cambridge University Press, Cambridge, 2003, 167181. MR 2012216.Google Scholar
[5] Degtyarev, A., Zariski k-plets via dessins d’enfants, Comment. Math. Helv. 84 (2009), 639671. MR 2507257. DOI 10.4171/CMH/176.CrossRefGoogle Scholar
[6] Degtyarev, A., Hurwitz equivalence of braid monodromies and extremal elliptic surfaces, Proc. Lond. Math. Soc. (3) 103 (2011), 10831120. MR 2861751. DOI 10.1112/plms/pdr013.Google Scholar
[7] Degtyarev, A., Itenberg, I., and Kharlamov, V., On deformation types of real elliptic surfaces, Amer. J. Math. 130 (2008), 15611627. MR 2464028. DOI 10.1353/ajm.0. 0029.Google Scholar
[8] Kulikov, V. S., Oru, D., and Shevchishin, V., Regular homotopy of Hurwitz curves (in Russian), Izv. Ross. Akad. Nauk Ser. Mat. 68 (2004), no. 3, 91114; English translation in Izv. Math. 68 (2004), no. 3, 521542. MR 2069195. DOI 10.1070/IM2004v068n03ABEH000487.Google Scholar
[9] Kulkarni, R. S., An arithmetic-geometric method in the study of the subgroups of the modular group, Amer. J. Math. 113 (1991), 10531133. MR 1137534. DOI 10.2307/2374900.Google Scholar
[10] Matveyev, R. and Rafi, K., personal communication, 2011.Google Scholar
[11] Moishezon, B., Complex Surfaces and Connected Sums of Complex Projective Planes, with an appendix by Livne, R., Lecture Notes in Math. 603, Springer, Berlin, 1977. MR 0491730.Google Scholar
[12] Moishezon, B., “The arithmetic of braids and a statement of Chisini” in Geometric Topology (Haifa, 1992), Contemp. Math. 164, Amer. Math. Soc., Providence, 1994, 151175. MR 1282761. DOI 10.1090/conm/164/01591.Google Scholar
[13] Naĭmark, M. A. and Stern, A. I., Theory of Group Representations, Grundlehren Math. Wiss. 246, Springer, New York, 1982. MR 0793377. DOI 10.1007/978-1-4613-8142-6.Google Scholar
[14] Orevkov, S. Y., Riemann existence theorem and construction of real algebraic curves, Ann. Fac. Sci. Toulouse Math. (6) 12 (2003), 517531. MR 2060598.Google Scholar
[15] Orevkov, S. Y., Quasipositivity problem for 3-braids, Turkish J. Math. 28 (2004), 8993. MR 2056762.Google Scholar
[16] Orevkov, S. Y., On braid monodromy monoid, presentation given at Mathematical Sciences Research Institute, April 2004.Google Scholar
[17] Öztürk, F. and Salepci, N., Real open books and real contact structures, preprint, arXiv:1202.5928 [math.GT]Google Scholar
[18] Salepci, N., Real elements in the mapping class group of T2 , Topology Appl. 157 (2010), 25802590. MR 2719402. DOI 10.1016/j.topol.2010.06.012.Google Scholar
[19] Salepci, N., Classification of totally real elliptic Lefschetz fibrations via necklace diagrams, J. Knot Theory Ramifications 21 (2012), no. 9. MR 2926572.CrossRefGoogle Scholar
[20] Salepci, N., Real Lefschetz fibrations, Ph.D. dissertation, Université Louis Pasteur, Strasbourg, France, 2007. MR 2780321.Google Scholar
[21] Series, C., “On coding geodesics with continued fractions” in Ergodic Theory (Sem., Les Plans-sur-Bex, 1980), Enseign. Math. (2) 29, Université de Genève, Geneva, 1981, 6776. MR 0609896.Google Scholar