Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-13T13:25:15.520Z Has data issue: false hasContentIssue false

Pseudo-reflection group actions on local rings

Published online by Cambridge University Press:  22 January 2016

Luchezar L. Avramov*
Affiliation:
Institute of Mathematics, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In a classical paper [C] Chevalley considered the invariants of a finite group HGLk(S1) generated by pseudo-reflections, acting on the graded polynomial ring S = k[X1,…,Xn] over a field k of characteristic zero. He proved that S is free as a graded SH-module, hence SH is a graded polynomial ring (Theorem A), and that the natural representation of H in is equivalent to the regular representation (Theorem B). On the other hand, a theorem of Shephard and Todd shows that when SH is a polynomial ring, the (finite) group H is generated by pseudo-reflections. These results have been extended by Bourbaki [Bo2] to fields whose characteristic may be positive, but does not divide the order |H| of the group.

Type
Research Article
Copyright
Copyright © Editorial Board of Nagoya Mathematical Journal 1982

References

[A] Avramov, L. L., Homology of local flat extensions and complete intersection defects, Math. Ann., 228 (1977), 2737.Google Scholar
[Ba] Bass, H., Algebraic K-Theory, W. A. Benjamin, N.-Y., 1969.Google Scholar
[Bo1] Bourbaki, N., Algebre commutative, Chapitre V, § 2, Hermann, Paris, 1964.Google Scholar
[Bo2] Bourbaki, N., Groupes et algebres de Lie, Chapitre V, § 5, Hermann, Paris, 1968.Google Scholar
[C] Chevalley, C., Invariants of finite groups generated by reflections, Amer. J. Math., 67 (1955), 778782.Google Scholar
[CHR] Chase, S. U., Harrison, D. K. and Rosenberg, A., Galois theory and Galois cohomology of commutative rings, Memoirs Amer. Math. Society, 52 (1965), 1533.Google Scholar
[F] Fossum, R., The divisor class group of a Krull domain, Ergebnisse der Math. Bd., 74, Springer-Verlag, Berlin-Heidelberg-N.-Y., 1973.Google Scholar
[G1] Goto, S., Invariant subrings under the action of a finite group generated by pseudo-reflections, Osaka J. Math., 15 (1978), 4750.Google Scholar
[G2] Goto, S., The rank of syzygies under the action by a finite group, Nagoya Math. J., 71 (1978), 112.Google Scholar
[HE] Hochster, M. and Eagon, J. A., Cohen-Macaulay rings, invariant theory, and the generic perfection of determinational loci, Amer. J. Math., 93 (1971), 10201056.CrossRefGoogle Scholar
[HK] Herzog, J. und Kunz, E. (Hrsg.), Der kanonische Modul eines Cohen-Macaulay-Rings, Lecture Notes in Math., 238, Springer-Verlag, Berlin-Heidelberg-N.-Y., 1971.Google Scholar
[K] Knighten, C. M., Differentials on quotients of algebraic varieties, Trans. Amer. Math. Soc, 177 (1973), 6589.Google Scholar
[L] Lech, C., Inequalities related to certain couples of local rings, Acta Math., 112 (1964), 6989.CrossRefGoogle Scholar
[LP] Lorenz, M. and Passman, D. S., Observations on crossed products and fixed rings, Communications in Algebra, 8 (1980), 743779.Google Scholar
[M] Müller, G., Endliche Automorphismengruppen analytischer C-Algebren und ihre Invarianten, Math. Ann., 260 (1982), 375396.CrossRefGoogle Scholar
[Se] Serre, J.-P., Groupes finis d’automorphismes d’anneaux locaux réguliers, Colloque d’Algèbre E.N.S.J.F., 1967.Google Scholar
[Si1] Singh, B., Invariants of finite groups acting on a local unique factorization domain, J. Indian Math. Soc, 34 (1970), 3138.Google Scholar
[Si2] Singh, B., Quotient of a local singularity by a finite pseudo-reflection group, Pre print, 1980 (to appear in J. Indian Math. Soc).Google Scholar
[Sp] Springer, T. A., Invariant Theory, Lecture Notes in Math. 585, Springer-Verlag, Berlin-Heidelberg-N.Y., 1977.Google Scholar
[SS1] Scheja, G. und Storch, U., Lokale Verzweigungstheorie, Schriftenreihe der Mathematischen Institutes der Universität Freiburg i. Ue. Nr. 5, WS 1973/74.Google Scholar
[SS2] Scheja, G. und Storch, U., Über Spurfunktionen bei vollständigen Durchschnitten, J. Reine und Angew. Math., 278/279 (1975), 174190.Google Scholar
[St] Storch, U., Über das Verhalten der Divisorenklassengruppen normaler Algebren bei nicht ausgearteten Erweiterungen und über endliche Derivationen analy-tischer Algebren, Habilitationsschrift Bochum, 1971.Google Scholar
[Wj] Watanabe, J., On Cohen-Macaulay rings with many zero divisors and applications, J. Algebra, 39 (1976), 114.Google Scholar
[Wk1] Watanabe, K., Certain invariant subrings are Gorenstein, I, Osaka J. Math., 11 (1974), 18.Google Scholar
[Wk2] Watanabe, K., Invariant subrings of a Gorenstein ring by a finite group generated by pseudoreflections, J. Fac. Sci. Univ. Tokyo, Sec. IA, 24 (1977), 8792.Google Scholar
[X] Hinic, V. A., On the Gorenstein property of the ring of invariants of a Gorenstein ring, Izvestija Akad. Nauk. SSSR, Ser. Mat., 40 (1976), 5056 (in Russian); English translation: Math. USSR, Izvestija, 10 (1976), 4753.Google Scholar