Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-28T03:08:04.075Z Has data issue: false hasContentIssue false

Quantum white noises—White noise approach to quantum stochastic calculus*

Published online by Cambridge University Press:  22 January 2016

Zhiyuan Huang*
Affiliation:
Department of Mathematics, Huazhong University of Science & Technology, Wuhan Hubei 430074P. R. CHINA
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let H = L2 (R) be the Hilbert space of all complex-valued square integrable functions defined on R, Ф = Γ(H) be the Boson Fock space over H. For each hH, denote by ε(h) the corresponding exponential vector:

in particular ε(0) is the Fock vacuum.

Type
Research Article
Copyright
Copyright © Editorial Board of Nagoya Mathematical Journal 1993

Footnotes

*

Work supported by the National Natural Science Foundation of China.

References

[1] Accardi, L. & Fagnola, F., Stochastic integration, Lect, Notes Math., 1303 (1988), 619.CrossRefGoogle Scholar
[2] Berezin, F. A., The Mathod of Second Quantization (translated by Mugibayashi, N. & Jeffrey, A.), Academic Press NY (1966).Google Scholar
[3] Berezin, F. A., Wick and anti-Wick operator symbols, Math. USSR Sbornik 15 (1971), 577606.Google Scholar
[4] Berezin, F. A., Quantization, Math. USSR lzvestija, 8 (1974) 11091165.Google Scholar
[5] Hida, T., Analysis of Brownian Functionals, Carleton Math. Lect. Notes, No. 13 (1975).Google Scholar
[6] Hida, T., Obata, N. & Saitô, K., Infinite dimensional rotations and Laplacians in terms of white noise calculus, Nagoya Math. J., 128 (1992), 6593.Google Scholar
[7] Huang, Z. Y., An introduction to quantum stochastic calculus, Adv. Math., 17, No. 4 (1988), 360378.Google Scholar
[8] Huang, Z. Y., Stochastic calculus of variation on Gaussian spaces and white noise analysis, in “Gaussian Random Fields” (Itô, K. & Hida, T. ed.) pp. 227241, World Scientific (1991).Google Scholar
[9] Hudson, R. L. & Parthasarathy, K. R., Quantum Itô’s formula and stochastic evolutions, Commun. Math. Phys., 93 (1984), 301323.CrossRefGoogle Scholar
[10] Krêe, P., La théorie des distributions en dimension quelconque et l’intégration stochastique, Lect. Notes Math., 1316 (1988), 170233.Google Scholar
[11] Krée, P. & Raczka, R., Kernels and symbols of operators in quantum field theory, Ann. Inst. H. Poincarê, A 28 (1978), 4173.Google Scholar
[12] Kubo, I. & Takenaka, S., Calculus on Gaussian white noise, I — IV, Proc. Japan Acad., 56 (1980), 376380, 411416: 57 (1981), 433437; 58 (1982), 186189.Google Scholar
[13] Lee, Y. J., On the convergence of Wiener-Itô decomposition, Bulletin Inst. Math. Acad. Sinica, 17, No.4 (1989), 305312.Google Scholar
[14] Maassen, H., Quantum Markov processes on Fock space described by integral kernels, Lect. Notes Math., 1136 (1985), 361374.Google Scholar
[15] Meyer, P. A., Eléments de probabilities quantique (exposés I – X) Lect. Notes Math., 1204 (1986), 186312: 1247 (1987), 3380; 1321 (1988), 101123.CrossRefGoogle Scholar
[16] Meyer, P. A., Distributions, noyaux, symboles d’après Krée, Lect. Notes Math., 1321 (1988), 467476.Google Scholar
[17] Obata, N., An analytic characterization of symbols of operators on white noise functionals, preprint (1991).Google Scholar
[18] Potthoff, J. & Streit, L., A characterization of Hida distributions, J. Funct. Anal., 101 (1991), 212229.Google Scholar
[19] Potthoff, J. & Yan, J. A., Some results about test and generalized functionals of white noise, in Proc. Singapore Prob. Conf. (Chen, L. H. Y. ed.) (1992).Google Scholar
[20] Yan, J. A., Notes on the Wiener semigroup and renormalizations, preprint (1990).Google Scholar