No CrossRef data available.
Article contents
Remark on the Tricomi Equation
Published online by Cambridge University Press: 22 January 2016
Extract
Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
As an application of the Garleman-type estimation Hörmander [4], p. 221, has proved the following:
A solution (distribution) of the Tricomi equation
in an open set Ω in belongs to C∞(Ω) if it is in C∞(Ω-) where
.
- Type
- Research Article
- Information
- Copyright
- Copyright © Editorial Board of Nagoya Mathematical Journal 1972
References
[1]
Baouendi, M. S., Sur une class d’opérateurs elliptiques dégénérés, Bull. Soc. Math.
France, 95, 45–87 (1967).Google Scholar
[2]
Berezin, I. S., On Cauchy’s problem for linear equations of the second order with initial conditions on a parabolic line (in Russian). Mat. Sbornik, N. S.
t24 (66), 301–320 (1949).Google Scholar
[3]
Courant, R. and Hilbert, D. : Methods of mathematical phisics. Vol. II. Inter-science Pub. New York (1962).Google Scholar
[4]
Hörmander, L. : Linear partial differential operators. Berlin, Springer-Verlag (1963).Google Scholar
[5]
Matsuzawa, T., Sur les équations utt+tαuxx= f (α≧0)
. Nagoya Math. J. Vol.
42, (1971).Google Scholar
[6]
Matsuzawa, T., Sur les équations quasi-elliptiques et les classes de Gevrey. Bull. Soc. Math. France, t96, 243–263 (1968).Google Scholar