Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-28T22:58:42.891Z Has data issue: false hasContentIssue false

Remarks on the Angular Derivative*)

Published online by Cambridge University Press:  22 January 2016

S. E. Warschawski*
Affiliation:
University of California, San Diego La Jolla, California
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Suppose that Ω is a simply connected domain in the w-plane, w = u + iv, and that w is an accessible boundary point of Ω located at w = ∞.

Type
Research Article
Copyright
Copyright © Editorial Board of Nagoya Mathematical Journal 1971

Footnotes

*)

Research sponsored (in part) by the U.S. Air Force Office of Scientific Research under AFOSR Grant No. 68-1514.

References

[1] Ahlfors, L.V., Untersuchungen zur Theorie der konformen Abbildung und der ganzen Funktionen, Acta Societatis Scientiarum Fennicae, nov. ser. A, vol. 1, No. 9 (1930): 140.Google Scholar
[2] Ferrand, J., Extension d’une inégalité de M. Ahlfors, Comptes rendus, Acad. de Paris, 220 (1945): 873874.Google Scholar
[3] Ferrand, J. et Dufresnoy, J., Extension d’une inégalité de M. Ahlfors et application au problème de la dérivee angulaire, Bulletin des Sciences math. 2 e serie, t. 69 (1945): 165174.Google Scholar
[4] Lelong-Ferrand, J., Représentation conforme et transformations à intégrale de Dirichlet bornée, Gauthier-Villars, Paris, 1955.Google Scholar
[5] Gattegno, C. et Ostrowski, A., Représentation conforme à la frontière: domains particuliers, Memorial des Sciences Mathématiques, Fasc. 110 (1949) Gauthier-Villars, Paris.Google Scholar
[6] Warschawski, S.E., On the boundary behavior of conformal maps, Nagoya Mathematical Journal, vol. 30 (1967): 83101.Google Scholar