Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-26T07:42:46.508Z Has data issue: false hasContentIssue false

Riemannian foliations with parallel curvature

Published online by Cambridge University Press:  22 January 2016

Robert A. Blumenthal*
Affiliation:
Department of Mathematics, Saint Louis University, St. Louis, Missouri 63103
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let M be a smooth compact manifold and let be a smooth codimension q Riemannian foliation of M. Let T(M) be the tangent bundle of M and let ET(M) be the subbundle tangent to . We may regard the normal bundle Q = T(M)/E of as a subbundle of T(M) satisfying T(M) = E ⊕ Q. Let g be a smooth Riemannian metric on Q invariant under the natural parallelism along the leaves of .

Type
Research Article
Copyright
Copyright © Editorial Board of Nagoya Mathematical Journal 1983

References

[ 1 ] Blumenthal, R. A., Transversely homogeneous foliations, Ann. Inst. Fourier, 29 (1979), 143158.Google Scholar
[ 2 ] Blumenthal, R. A., Foliated manifolds with flat basic connection, J. Differential Geom., 16 (1981), 401406.Google Scholar
[ 3 ] Bott, R., Lectures on characteristic classes and foliations (notes by L. Conlon), Lecture Notes in Math., no. 279, Springer-Verlag, New York, 1972, 180.Google Scholar
[ 4 ] Chevalley, C. and Eilenberg, S., Cohomology theory of Lie groups and Lie algebras, Trans. Amer. Math. Soc, 63 (1948), 85124.Google Scholar
[ 5 ] Conlon, L., Transversally parallelizable foliations of codimension two, Trans. Amer. Math. Soc, 194 (1974), 79102.Google Scholar
[ 6 ] Greub, W., S. Halperin and R. Vanstone, Connections, curvature, and cohomology, vol. II, Academic Press, New York, 1973.Google Scholar
[ 7 ] Hermann, R., On the differential geometry of foliations, Ann. of Math., 72 (1960), 445457.Google Scholar
[ 8 ] Kobayashi, S. and K. Nomizu, Foundations of differential geometry, vol. I, II. Interscience Tracts in Pure and Appl. Math., 15, Interscience, New York, 1963.Google Scholar
[ 9 ] Lazarov, C. and Pasternack, J., Secondary characteristic classes for Riemannian foliations, J. Differential Geom., 11 (1976), 365385.Google Scholar
[10] Molino, P., Connexions et G-structures sur les variétés feuilletées, Bull. Sci. Math., 92 (1968), 5963.Google Scholar
[11] Molino, P., Etude des feuilletages transversalement complets et applications, Ann. Sci. École Norm. Sup., 10 (1977), 289307.Google Scholar
[12] Molino, P., Feuilletages et classes caractéristiques, Symposia Mathematica, X (1972), 199209.Google Scholar
[13] Plante, J. F., Foliations with measure preserving holonomy, Ann. of Math., 102 (1975), 327361.Google Scholar
[14] Reeb, G., Sur certaines propriétés topologiques des variétés feuilletées, Actualités Sci. Indust., no.1183, Hermann, Paris, 1952.Google Scholar
[15] Reinhart, B., Closed metric foliations, Michigan Math. J., 8 (1961), 79.Google Scholar
[16] Reinhart, B., Foliated manifolds with bundle-like metrics, Ann. of Math., 69 (1959), 119132.Google Scholar
[17] Reinhart, B., Harmonic integrals on foliated manifolds, Amer. J. Math., 81 (1959), 529536.Google Scholar
[18] Wolf, J., Spaces of constant curvature, McGraw-Hill, New York, 1967.Google Scholar