Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-13T13:25:02.597Z Has data issue: false hasContentIssue false

Siegel modular forms and theta series attached to quaternion algebras II

Published online by Cambridge University Press:  22 January 2016

S. Böcherer
Affiliation:
Fakultät für Mathematik und Informatik, Universität Mannheim, Seminargebäude A5, D-68131 Mannheim, Germanyboech@math.uni-mannheim.de
R. Schulze-Pillot
Affiliation:
Fachbereich Mathematik, Universität des Saarlandes, Postfach 151150, D-66041 Saarbrücken, Germanyschulzep@math.uni-sb.de
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We continue our study of Yoshida’s lifting, which associates to a pair of automorphic forms on the adelic multiplicative group of a quaternion algebra a Siegel modular form of degree 2. We consider here the case that the automorphic forms on the quaternion algebra correspond to modular forms of arbitrary even weights and square free levels; in particular we obtain a construction of Siegel modular forms of weight 3 attached to a pair of elliptic modular forms of weights 2 and 4.

Type
Research Article
Copyright
Copyright © Editorial Board of Nagoya Mathematical Journal 1997

References

[1] Böcherer, S., Siegel modular forms and theta series, Proc. Symp. Pure Math. 49, 2 (1989), pp. 317.Google Scholar
[2] Böcherer, S., Über die Fourier-Jacobi Entwicklung der Siegelschen Eisensteinreihen II, Mathem. Z., 189 (1989), 81110.CrossRefGoogle Scholar
[3] Böcherer, S., Satoh, T. and Yamazaki, T., On the pullback of a differential operator and its application to vector valued Eisenstem series, Comm. Math. Univ. S. Pauli, 41 (1992), 122.Google Scholar
[4] Böcherer, S. and Schmidt, C. G., p-adic measures attached to Siegel modular forms, Preprint 1995, to appear in Ann. Inst. Fourier.Google Scholar
[5] Böcherer, S. and Schulze-Pillot, R., Siegel modular forms and theta series attached to quaternion algebras, Nagoya Math. J., 121 (1991), 3596.Google Scholar
[6] Böcherer, S. and Schulze-Pillot, R., Mellin transforms of vector valued theta series attached to quaternion algebras, Math. Nachr., 169 (1994), 3157.Google Scholar
[7] Böcherer, S. and Schulze-Pillot, R., On the central critical value of the triple product L-function, Number Theory (Sem. de Th. de Nombres Paris 1993-1994) (David, S., ed.), Cambridge (1996), pp. 146.Google Scholar
[8] Eichler, M., The basis problem for modular forms and the traces of the Hecke operators, Modular functions of one variable I, Lecture Notes Math., 320, Springer-Verlag, Berlin-Heidelberg-New York (1973), pp. 76151.Google Scholar
[9] Evdokimov, S. A., Action of the irregular Hecke operator of index p on the theta series of a quadratic form, J. Sov. Math., 38 (1987), 20782081.Google Scholar
[10] Freitag, E., Lecture Notes Math., 1487, Springer-Verlag, Berlin-Heidelberg (1991).Google Scholar
[11] Garrett, P., Decomposition of Eisenstem series Rankin triple products, Annals of Math., 125 (1987), 209235.CrossRefGoogle Scholar
[12] Godement, R., Séminaire Cartan 10 (1957/58), Exp. 49.Google Scholar
[13] Hashimoto, K., On Brandt matrices of Eichler orders, Memoirs of the School of Science and Engineering Waseda University, 59 (1995), 143165.Google Scholar
[14] Hijikata, H. and Saito, H., On the representability of modular forms by theta series, Number Theory, Algebraic Geometry and Commutative Algebra, in honor of Y. Ak-izuki (1973), pp. 1321.Google Scholar
[15] Howe, R. and Piatetski-Shapiro, I. I., Some examples of automorphic forms on Sp4 , Duke Math. J., 50 (1983), 55106.Google Scholar
[16] Hua, L. K., Harmonic Analysis of Functions of Several Complex Variables in the Classical Domain, Translations of Mathematical Monographs, 6 (1963), AMS.Google Scholar
[17] Ibukiyama, T., On differential operators on automorphic forms and invariant pluri-harmonic polynomials, Preprint (1990).Google Scholar
[18] Jacquet, H. and Langlands, R., Lect. Notes in Math., 114, Springer-Verlag, Berlin-Heidelberg-New York (1970).Google Scholar
[19] Kashiwara, M. and Vergne, M., On the Segal-Shale-Weil representations and harmonic polynomials, Invent. Math., 44 (1987), 144.Google Scholar
[20] Kitaoka, Y., Arithmetic of Quadratic Forms, Cambridge, 1993.Google Scholar
[21] Klingen, H., Introductory Lectures on Siegel Modular Forms, Cambridge University Press, 1990.Google Scholar
[22] Maaß, H., Siegel’s modular forms and Dirichlet series, Lect. Notes Math., 216, Springer-Verlag, Berlin, Heidelberg, New York, 1971.Google Scholar
[23] Ogg, A., On a convolution of L-series, Invent. Math., 7 (1969), 279312.Google Scholar
[24] Shahidi, F., On certain L-functions, Amer. J. Math., 103, 297355.Google Scholar
[25] Shimizu, H., Theta series and automorphic forms on GL2 , J. of the Math. Soc. of Japan, 24 (1972), 638683.Google Scholar
[26] Schulze-Pillot, R., An algorithm for computing genera of ternary and quaternary quadratic forms, Proceedings of the International Symposium on Symbolic and Algebraic computation, (ISSAC) Bonn (1991), pp. 134143.Google Scholar
[27] Skoruppa, N.-P., Computations of Siegel modular forms of genus two, Math. Comp., 58 (1992), 381398.Google Scholar
[28] Takayanagi, H., Vector valued Siegel modular forms and their L-functions; application of a differential operator, Japan. J. Math., 19 (1994), 251297.Google Scholar
[29] Weissauer, R., Vektorwertige Siegelsche Modulformen kleinen Gewichts, J. f. d. reine u. angew. Math., 343 (1983), 184202.Google Scholar
[30] Yoshida, H., Siege Vs modular forms and the arithmetic of quadratic forms, Invent. math., 60 (1980), 193248.Google Scholar
[31] Yoshida, H., On Siegel modular forms obtained from theta series, J. f. d. reine u. angew. Math., 352 (1984), 184219.Google Scholar