No CrossRef data available.
Published online by Cambridge University Press: 22 January 2016
A nonnegative locally Hölder continuous function P(z) on 0 < | z | ≤ 1 will be referred to as a density on 0 < | z | ≤ 1. The elliptic dimension of a density P(z) at z = 0, dim P in notation, is defined to be the dimension of the half module of nonnegative solutions of the equation Δu(z) = P(z)u(z) on the punctured unit disk Ω : 0 < | z | < 1 with boundary values zero on | z | = 1. After Bouligand we say that the Picard principle is valid for a density P at z = 0 if dim P = 1.