Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-27T08:03:14.756Z Has data issue: false hasContentIssue false

Unit Groups of Cyclic Extensions

Published online by Cambridge University Press:  22 January 2016

Tomio Kubota*
Affiliation:
Mathematical Institute, Nagoya University
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let Ω be an algebraic number field of finite degree, which we fix once for all, and let K be a cyclic extension over Ω such that the degree of K/Ω is a powerof a prime number l. It is obvious that the norm group NK/ΩeK of the unit group ek of K, being a subgroup of the unit group e of Ω contains the groupconsisting of all-th powersof ε∈e.

Type
Research Article
Copyright
Copyright © Editorial Board of Nagoya Mathematical Journal 1957

References

[1] Chevalley, C., Class field theory, Nagoya University (1953/54).Google Scholar
[2] Hasse, H., Die Multiplikationsgruppe der abelschen Körper mit fester Galoisgruppe, Abh. Math. Sem. Univ. Hamburg, 16 (1949), pp. 2940.CrossRefGoogle Scholar
[3] Hasse, H., Zum Existenzsatz von Grunwald in der Klassenkörpertheorie, J. Reine Angew. Math., 188 (1950), pp. 4064.CrossRefGoogle Scholar
[4] Kubota, T., A note on units of algebraic number fields, Nagoya Math. J., 9, (1955), pp. 115118.Google Scholar
[5] Kubota, T., Galois group of the maximal abelian extension over an algebraic number field, this Journal, pp. 177189.Google Scholar
[6] Weil, A., Sur la théorie du corps de classes, J. Math. Soc. Japan, 3 (1951), pp. 135.Google Scholar