Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-28T22:42:47.272Z Has data issue: false hasContentIssue false

Vector Bundles on an Elliptic Curve

Published online by Cambridge University Press:  22 January 2016

Tadao Oda*
Affiliation:
Mathematical Institute, Nagoya University
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let k be an algebraically closed field of characteristic p≧ 0, and let X be an abelian variety over k.

The goal of this paper is to answer the following questions, when dim(X) = 1 and p≠0, posed by R. Hartshorne:

  • (1) Is E(P) indecomposable, when E is an indecomposable vector bundle on X?

  • (2) Is the Frobenius map F*: H1 (X, E) → H1 (X, E(p)) injective?

    We also partly answer the following question posed by D. Mumford:

  • (3) Classify, or at least say anything about, vector bundles on X when dim (X) > 1.

Type
Research Article
Copyright
Copyright © Editorial Board of Nagoya Mathematical Journal 1971

References

EGA, , Grothendieck, A. and Dieudonné, J., Eléments de géométrie algébrique, Publ. Math. I.H.E.S..Google Scholar
FGA, , Grothendieck, A., Fondements de la géométrie algébrique, Séminaire Bourbaki, Extracts of 1957/1962.Google Scholar
SGA, , Grothendieck, A., Séminaire de géométrie algébrique, I.H.E.S, 1960/1961.Google Scholar
[1] Atiyah, M.F., Vector bundles over an elliptic curve, Proc. London Math. Soc, 7 (1957). 414452.CrossRefGoogle Scholar
[2] Atiyah, M.F., Complex analytic connections in fibre bundles, Trans. Amer. Math. Soc, 85 (1957), 181207.CrossRefGoogle Scholar
[3] Cartier, P., Groupes algébriques et groupes formels, Coll. Théorie Groupes Algébriques, C.B. R.M., Bruxelles, (1962), 87111.Google Scholar
[4] Cartier, P., Groupes formels associés aux anneaux de Witt généralisés, C.R. Acad. Sc. Paris, 265(A) (1967), 4952.Google Scholar
[5] Gunning, R.C., General actors of automorphy, Proc. Nat. Acad. Sc. U.S.A., 44 (1955). 496498.CrossRefGoogle Scholar
[6] Hartshorne, R., Residues and duality, Lecture notes in Math. 20 (1966), Springer Verlag, Berlin-Heidelberg-New York.Google Scholar
[7] Hartshorne, R., Ample vector bundles on curves, Nagoya Math. J., Vol. 43 (this volume).Google Scholar
[8] Lang, S. and Serre, J.-P., Sur les revêtements non ramifiés des variétés algébriques, Amer. J. Math., 79 (1957), 319330.CrossRefGoogle Scholar
[9] Matsushima, Y., Fibres holomorphes sur un tore complexe, Nagoya Math. J., 14 (1959), 124.CrossRefGoogle Scholar
[10] Morikawa, H., A note on holomorphic vector bundles over complex tori, Nagoya Math. J., 41 (1971), 101106.CrossRefGoogle Scholar
[11] Morimoto, A., Sur la classifications des espaces fibres vectoriels holomorphes sur un tore complexe admettant des connexions holomorphes, Nagoya Math. J., 15 (1959), 83154.CrossRefGoogle Scholar
[12] Mumford, D., Geometric invariant theory, Springer Verlag 1965, Berlin-Heidelberg-New York.CrossRefGoogle Scholar
[13] Mumford, D., On the equations defining abelian varieties I, II, III, Invent. Math., 1 (1966), 287354; ibid. 3 (1967), 75135; ibid. 215244.CrossRefGoogle Scholar
[14] Mumford, D., Abelian varieties, Tata Inst. studies in Math., Oxford Univ. Press. 1970.Google Scholar
[15] Narasimhan, M.S. and Seshadri, C.S., Stable and unitary vector bundles on a compact Riemann surface, Ann. of Math., 82 (1965), 540567.CrossRefGoogle Scholar
[16] Oda, T., The first de Rham cohomology group and Dieudonné modules, Ann. Sc. École Norm. Sup. Paris, (4) 2 (1969), 63135.CrossRefGoogle Scholar
[17] Raynaud, M., Familles de fibres vectoriels sur une surface de Riemann [d’après C.S. Seshadri, M.S. Narasimhan et D. Mumford], Seminane Bourbaki 1966/1967, exposé 316.Google Scholar
[18] Schwarzenberger, R.L.E., Vector bundles on algebraic surfaces, Proc. London Math. Soc, (3) 11 (1961), 601622.CrossRefGoogle Scholar
[19] Schwarzenberger, R.L.E., Vector bundles on the projective plane, ibid., 623640.Google Scholar
[20] Seshadri, C.S., Space of unitary vector bundles on a compact Riemann surface, Ann. of Math., 85 (1967), 303336.CrossRefGoogle Scholar