Ce travail est consacré aux groupes d’automorphismes de certaines algebres quantiques de dimension 2 ou 3. Dans la théorie classique des algebres enveloppantes, si désigne l’algèbre de Lie de Heisenberg de dimension 3, U() admet l’algèbre de Weyl A1 comme seul quotient primitif de dimension 2, avec les propriétés suivantes: d’ une part tout automorphisme de A1 se relève en un automor-phisme de U(), d’autre part U() admet des automorphismes non modérés (cf. [A1], [Di1], [ML]). On retrouve la même situation pour les quotients primitifs minimaux de U(sl(2)) paramétrés par C (cf. [Di2], [Jo]). En outre, dans ce cas, on dispose des plongements de Conze de ces quotients dans A1 (cf. [Di2], [Co], [Ro]); bien que les groupes d’automorphismes soient comparables, la restriction correspondant à un tel plongement est seulement définie sur le sous-groupe des automorphismes triangulaires de A1 (cf. annexe).