Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-27T05:03:45.897Z Has data issue: false hasContentIssue false

Construction Grammar Conceptual Network: Coordination-based graph method for semantic association analysis

Published online by Cambridge University Press:  04 July 2022

Benedikt Perak*
Affiliation:
Faculty of Humanities and Social Sciences, University of Rijeka, HR, Rijeka, Croatia
Tajana Ban Kirigin
Affiliation:
Faculty of Mathematics, University of Rijeka, HR, Rijeka, Croatia
*
*Corresponding author. E-mail: bperak@uniri.hr

Abstract

In this article, we present the Construction Grammar Conceptual Network method, developed for identifying lexical similarity and word sense discrimination in a syntactically tagged corpus, based on the cognitive linguistic assumption that coordination construction instantiates conceptual relatedness. This graph analysis method projects a semantic value onto a given coordinated syntactic dependency and constructs a second-order lexical network of lexical collocates with a high co-occurrence measure. The subsequent process of clustering and pruning the graph reveals lexical communities with high conceptual similarity, which are interpreted as associated senses of the source lexeme. We demonstrate the theory and its application to the task of identifying the conceptual structure and different meanings of nouns, adjectives and verbs using examples from different corpora, and explain the modulating effects of linguistic and graph parameters. This graph approach is based on syntactic dependency processing and can be used as a complementary method to other contemporary natural language processing resources to enrich semantic tasks such as word disambiguation, domain relatedness, sense structure, identification of synonymy, metonymy, and metaphoricity, as well as to automate comprehensive meta-reasoning about languages and identify cross/intra-cultural discourse variations of prototypical conceptualization patterns and knowledge representations. As a contribution, we provide a web-based app at http://emocnet.uniri.hr/.

Type
Article
Copyright
© The Author(s), 2022. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abnar, S., Ahmed, R., Mijnheer, M. and Zuidema, W. (2017). Experiential, distributional and dependency-based word embeddings have complementary roles in decoding brain activity. arXiv preprint arXiv:1711.09285.Google Scholar
Anthony, L. (2019). AntConc (Version 3.5. 8)[Computer Software]. Waseda University. Available at https://www.laurenceanthony.net/software.Google Scholar
Ban Kirigin, T., Bujačić Babić, S. and Perak, B. (2021). Lexical sense labeling and sentiment potential analysis using corpus-based dependency graph. Mathematics 9(12), 1449.CrossRefGoogle Scholar
Ban Kirigin, T., Meštrović, A. and Martinčić-Ipšić, S. (2015). Towards a formal model of language networks. In International Conference on Information and Software Technologies. Springer, pp. 469479.CrossRefGoogle Scholar
Beekhuizen, B. and Bod, R. (2014). 3. Automating construction work: Data-Oriented Parsing and constructivist accounts of language acquisition. In Extending the Scope of Construction Grammar. De Gruyter Mouton, pp. 4774.Google Scholar
Bergen, B. and Chang, N. (2005). Embodied construction grammar in simulation-based language understanding. Construction grammars: Cognitive Grounding and Theoretical Extensions 3, 147190.CrossRefGoogle Scholar
Biemann, C. (2011). Structure Discovery in Natural Language. Berlin, Heidelberg: Springer.Google Scholar
Bird, S. (2006). NLTK: The natural language toolkit. In Proceedings of the COLING/ACL 2006 Interactive Presentation Sessions, pp. 6972.CrossRefGoogle Scholar
Blondel, V.D., Guillaume, J.-L., Lambiotte, R. and Lefebvre, E. (2008). Fast unfolding of communities in large networks. Journal of Statistical Mechanics: Theory and Experiment 2008(10), P10008.CrossRefGoogle Scholar
Brezina, V., McEnery, T. and Wattam, S. (2015). Collocations in context: A new perspective on collocation networks. International Journal of Corpus Linguistics 20(2), 139173.CrossRefGoogle Scholar
Brezina, V., Weill-Tessier, P. and McEnery, A. (2020). LancsBox v. 5. x.[Software]. Lancaster University. Available at http://corpora.lancs.ac.uk/lancsbox.Google Scholar
Brin, S. and Page, L. (1998). The anatomy of a large-scale hypertextual web search engine. Computer Networks and ISDN Systems 30(1–7), 107117.CrossRefGoogle Scholar
Buyko, E. and Hahn, U. (2008). Are morpho-syntactic features more predictive for the resolution of noun phrase coordination ambiguity than Lexico-semantic similarity scores? In Proceedings of the 22nd International Conference on Computational Linguistics (COLING 2008), pp. 8996.Google Scholar
Camacho-Collados, J. and Pilehvar, M.T. (2018). From word to sense embeddings: A survey on vector representations of meaning. Journal of Artificial Intelligence Research 63, 743788.CrossRefGoogle Scholar
Chantree, F., Kilgarriff, A., De Roeck, A. and Willis, A. (2005). Disambiguating coordinations using word distribution information. In Proceedings of RANLP2005.Google Scholar
Clauset, A., Newman, M.E.J. and Moore, C. (2004). Finding community structure in very large networks. Physical Review E 70, 066111.CrossRefGoogle ScholarPubMed
Croft, W. (2001). Radical Construction Grammar: Syntactic Theory in Typological Perspective. Oxford: Oxford University Press.CrossRefGoogle Scholar
Croft, W. (2007). Construction grammar. In The Oxford Handbook of Cognitive Linguistics. Oxford Handbooks Online.Google Scholar
Csardi, G. and Nepusz, T. (2006). The igraph software package for complex network research. InterJournal, Complex Systems 1695(5), 19.Google Scholar
Čulig Suknaić, J. (2020). Antonimija kao pojmovna kategorija značenjske suprotnosti u engleskome i hrvatskome jeziku. PhD Thesis, Faculty of Humanities and Social Sciences. University of Zagreb.Google Scholar
De Marneffe, M.-C. and Nivre, J. (2019). Dependency grammar. Annual Review of Linguistics 5, 197218.CrossRefGoogle Scholar
Devlin, J., Chang, M.-W., Lee, K. and Toutanova, K. (2018). Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805.Google Scholar
Dorow, B. and Widdows, D. (2003). Discovering corpus-specific word senses. In 10th Conference of the European Chapter of the Association for Computational Linguistics.CrossRefGoogle Scholar
Dunn, J. (2017). Computational learning of construction grammars. Language and Cognition 9(2), 254292.CrossRefGoogle Scholar
Dunn, J. and Madabushi, H.T. (2021). Learned Construction Grammars Converge Across Registers Given Increased Exposure. arXiv preprint arXiv:2110.05663.Google Scholar
Dwivedi, V.P. and Bresson, X. (2020). A generalization of transformer networks to graphs. arXiv preprint arXiv:2012.09699.Google Scholar
Ellis, N.C. (2019). Essentials of a theory of language cognition. The Modern Language Journal 103, 3960.CrossRefGoogle Scholar
Ellis, N.C., O’Donnell, M.B. and Römer, U. (2013). Usage-based language: Investigating the latent structures that underpin acquisition. Language Learning 63, 2551.CrossRefGoogle Scholar
Faruqui, M., Tsvetkov, Y., Rastogi, P. and Dyer, C. (2016). Problems with evaluation of word embeddings using word similarity tasks. arXiv preprint arXiv:1605.02276.Google Scholar
Firth, J.R. (1957). A synopsis of linguistic theory, 1930–1955. Studies in Linguistic Analysis, 132. https://www.semanticscholar.org/paper/A-Synopsis-of-Linguistic-Theory%2C-1930-1955-Firth/88b3959b6f5333e5358eac43970a5fa29b54642c.Google Scholar
Gentner, D. (2016). Language as cognitive tool kit: How language supports relational thought. The American Psychologist 71(8), 650657.CrossRefGoogle ScholarPubMed
Gliozzo, A. and Strapparava, C. (2009). Semantic Domains in Computational Linguistics. Berlin, Heidelberg: Springer.CrossRefGoogle Scholar
Goldberg, A.E. (1995). Constructions: A Construction Grammar Approach to Argument Structure. Chicago: University of Chicago Press.Google Scholar
Goldberg, A.E. (2006). Constructions at Work: The Nature of Generalization in Language. Oxford: Oxford University Press.Google Scholar
Goldberg, Y. (2016). A primer on neural network models for natural language processing. Journal of Artificial Intelligence Research 57, 345420.CrossRefGoogle Scholar
Goldberg, Y. and Levy, O. (2014). word2vec Explained: Deriving Mikolov et al.’s negative-sampling word-embedding method. arXiv preprint arXiv:1402.3722.Google Scholar
Guan, C., Wang, X., Zhang, Q., Chen, R., He, D. and Xie, X. (2019). Towards a deep and unified understanding of deep neural models in NLP. In Chaudhuri K. and Salakhutdinov R. (eds), Proceedings of the 36th International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 97. PMLR, pp. 24542463.Google Scholar
Halawi, G., Dror, G., Gabrilovich, E. and Koren, Y. (2012). Large-scale learning of word relatedness with constraints. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 14061414.CrossRefGoogle Scholar
Harispe, S., Ranwez, S., Janaqi, S. and Montmain, J. (2015). Semantic similarity from natural language and ontology analysis. Synthesis Lectures on Human Language Technologies 8(1), 1254.CrossRefGoogle Scholar
Harris, Z.S. (1954). Distributional structure. Word 10(2–3), 146162. Reprinted in Fodor J.A. and Katz J.J. (eds), Readings in the Philosophy of Language.CrossRefGoogle Scholar
Haspelmath, M. (2004). Coordinating Constructions, vol. 58. Amsterdam/Philadelphia: John Benjamins Publishing.CrossRefGoogle Scholar
He, H. and Choi, J. (2020). Establishing strong baselines for the new decade: Sequence tagging, syntactic and semantic parsing with BERT. In The Thirty-Third International Flairs Conference.Google Scholar
Hilpert, M. (2014). Construction Grammar and its Application to English. Edinburgh: Edinburgh University Press.Google Scholar
Höder, S. (2018). Grammar is community-specific: Background and basic concepts of Diasystematic Construction Grammar. In Constructions in Contact. Constructional Perspectives on Contact Phenomena in Germanic Languages, pp. 3770.CrossRefGoogle Scholar
Honnibal, M. (2015). spaCy: Industrial-strength Natural Language Processing (NLP) with Python and Cython. Available at https://spacy.io/.Google Scholar
Humberstone, L. (2011). The Connectives. Cambridge, Massachusetts: MIT Press.CrossRefGoogle Scholar
Jurafsky, D. and Martin, J.H. (2018). Speech and language processing (draft). Available at https://web.stanford.edu/jurafsky/slp3.Google Scholar
Kilgarriff, A., Baisa, V., Bušta, J., Jakubček, M., KováŘ, V., Michelfeit, J., Rychlý, P. and Suchomel, V. (2014). The sketch engine: Ten years on. Lexicography 1(1), 736.CrossRefGoogle Scholar
Kilgarriff, A. and Tugwell, D. (2001). Word sketch: Extraction and display of significant collocations for lexicography. In Proceedings of the ACL Workshop on Collocation: Computational Extraction, Analysis and Exploitation. Toulouse, France, pp. 3238.Google Scholar
Kovaleva, O., Romanov, A., Rogers, A. and Rumshisky, A. (2019). Revealing the dark secrets of BERT. arXiv preprint arXiv:1908.08593.Google Scholar
Lakoff, G. (2008). Women, Fire, and Dangerous Things. Chicago: University of Chicago Press.Google Scholar
Lakoff, G., Johnson, M. (1999). Philosophy in the Flesh: The Embodied Mind and its Challenge to Western Thought, vol. 640. New York: Basic Books.Google Scholar
Landauer, T.K., Foltz, P.W. and Laham, D. (1998). An introduction to latent semantic analysis. Discourse Processes 25(2–3), 259284.CrossRefGoogle Scholar
Langacker, R.W. (1987). Foundations of Cognitive Grammar: Theoretical Prerequisites, vol. 1. Stanford, CA: Stanford University Press.Google Scholar
Langacker, R.W. (2008). Cognitive Grammar. New York: Oxford University Press.CrossRefGoogle Scholar
Langacker, R.W. (2009). Investigations in Cognitive Grammar. Berlin: De Gruyter Mouton.CrossRefGoogle Scholar
Latapy, M. (2008). Main-memory triangle computations for very large (sparse (power-law)) graphs. Theoretical Computer Science 407(1–3), 458473.CrossRefGoogle Scholar
Levy, O. and Goldberg, Y. (2014). Dependency-based word embeddings. In Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), vol. 2, pp. 302308.CrossRefGoogle Scholar
Lin, D. (1998). Automatic retrieval and clustering of similar words. In 36th Annual Meeting of the Association for Computational Linguistics and 17th International Conference on Computational Linguistics, Volume 2, pp. 768774.Google Scholar
Ljubešić, N. and Dobrovoljc, K. (2019). What does neural bring? Analysing improvements in morphosyntactic annotation and lemmatisation of Slovenian, Croatian and Serbian. In Proceedings of the 7th Workshop on Balto-Slavic Natural Language Processing. Florence, Italy: Association for Computational Linguistics, pp. 2934.CrossRefGoogle Scholar
Ljubešić, N. and Štefanec, V. (2020). The CLASSLA-StanfordNLP model for lemmatisation of non-standard Serbian 1.1. Slovenian language resource repository CLARIN.SI.Google Scholar
Madabushi, H.T., Romain, L., Divjak, D. and Milin, P. (2020). CxGBERT: BERT meets Construction Grammar. arXiv preprint arXiv:2011.04134.Google Scholar
Manning, C.D., Surdeanu, M., Bauer, J., Finkel, J.R., Bethard, S. and McClosky, D. (2014). The Stanford CoreNLP natural language processing toolkit. In Proceedings of 52nd Annual Meeting of the Association for Computational Linguistics: System Demonstrations, pp. 5560.CrossRefGoogle Scholar
Mikolov, T., Chen, K., Corrado, G. and Dean, J. (2013a). Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781.Google Scholar
Mikolov, T., Yih, W.-t. and Zweig, G. (2013b). Linguistic regularities in continuous space word representations. In Proceedings of the 2013 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp. 746751.Google Scholar
Miller, G. (1998). WordNet: An Electronic Lexical Database. Cambridge, MA: MIT Press.Google Scholar
Miller, G.A. (1995). WordNet: A lexical database for English. Communications of the ACM 38(11), 3941.CrossRefGoogle Scholar
Minkov, E. and Cohen, W. (2008). Learning graph walk based similarity measures for parsed text. In Proceedings of the 2008 Conference on Empirical Methods in Natural Language Processing, pp. 907916.CrossRefGoogle Scholar
Mohammadshahi, A. and Henderson, J. (2019). Graph-to-graph transformer for transition-based dependency parsing. arXiv preprint arXiv:1911.03561.Google Scholar
Mrini, K., Dernoncourt, F., Tran, Q., Bui, T., Chang, W. and Nakashole, N. (2019). Rethinking self-attention: Towards interpretability in neural parsing. arXiv preprint arXiv:1911.03875.Google Scholar
Nastase, V., Mihalcea, R. and Radev, D.R. (2015). A survey of graphs in natural language processing. Natural Language Engineering 21(5), 665698.CrossRefGoogle Scholar
Navigli, R. (2009). Word sense disambiguation: A survey. ACM Computing Surveys (CSUR) 41(2), 169.CrossRefGoogle Scholar
Navigli, R. and Velardi, P. (2005). Structural semantic interconnections: A knowledge-based approach to word sense disambiguation. IEEE Transactions on Pattern Analysis and Machine Intelligence 27(7), 10751086.CrossRefGoogle ScholarPubMed
Nazzi, T. and Gopnik, A. (2001). Linguistic and cognitive abilities in infancy: When does language become a tool for categorization? Cognition 80(3), B11B20.CrossRefGoogle ScholarPubMed
Needham, M. and Hodler, A.E. (2018). A comprehensive guide to graph algorithms in neo4j. Neo4j. com.Google Scholar
Newman, M.E.J. and Girvan, M. (2004). Finding and evaluating community structure in networks. Physical Review E 69(2), 026113.CrossRefGoogle ScholarPubMed
Nivre, J., De Marneffe, M.-C., Ginter, F., Goldberg, Y., Hajic, J., Manning, C.D., McDonald, R., Petrov, S., Pyysalo, S., Silveira, N., Tsarfaty, R. and Zeman, D. (2016). Universal dependencies v1: A multilingual treebank collection. In Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC’16), pp. 16591666.Google Scholar
Pantel, P. and Lin, D. (2002). Discovering word senses from text. In Proceedings of the Eighth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 613619.CrossRefGoogle Scholar
Partee, B.B.H., ter Meulen, A.G. and Wall, R. (2012). Mathematical Methods in Linguistics, vol. 30. Dordrecht, The Netherlands: Kluwer Academic Publishers.Google Scholar
Pennington, J., Socher, R. and Manning, C. (2014). Glove: Global vectors for word representation. In Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 15321543.CrossRefGoogle Scholar
Perak, B., Damčević, K. and Milošević, J. (2018). O sranju i drugim neprimjerenim stvarima: Kognitivno-lingvistička analiza psovki u hrvatskome. In Jezik i njegovi učinci, pp. 245270.Google Scholar
Perak, B. (2017). Conceptualisation of the emotion terms: Structuring, categorisation, metonymic and metaphoric processes within multi-layered graph representation of the syntactic and semantic analysis of corpus data. In Cognitive Modelling in Language and Discourse across Cultures. Cambridge Scholars Publishing, Newcastle upon Tyne, pp. 299319.Google Scholar
Perak, B. (2019a). An ontological and constructional approach to the discourse analysis of commemorative speeches in Croatia. In Pavlaković V. and Pauković D. (eds), Framing the Nation and Collective Identities Political Rituals and Cultural Memory of the Twentieth-Century Traumas in Croatia. Memory Studies: Global Constellations. London: Routledge, pp. 63100.Google Scholar
Perak, B. (2019b). The role of the metonymy and metaphor in the conceptualization of NATION. An emergent ontological analysis of syntactic-semantic constructions. In Šarić L. and Milan Stanojević M. (eds), Metaphors in the Discourse of the National. Discourse Approaches to Politics, Society and Culture, vol. 82. Amsterdam: John Benjamins Publishing Company, p. 227.CrossRefGoogle Scholar
Perak, B. (2020a). Developing the ontological model for research and representation of Commemoration Speeches in Croatia using a graph property database. In Digital Humanities: Empowering Visibility of Croatian Cultural Heritage. Cambridge, UK: Cambridge University Press, pp. 88111.Google Scholar
Perak, B. (2020b). Emocije u korpusima: Konstrukcijska gramatika i graf-metode analize izraŽavanja emotivnih kategorija. In Zagrebačka slavistička Škola, 48. hrvatski seminar za strane slaviste, pp. 100120.CrossRefGoogle Scholar
Perak, B. and Ban Kirigin, T. (2020). Corpus-based syntactic-semantic graph analysis: Semantic domains of the concept feeling. Rasprave: časopis Instituta za hrvatski jezik i jezikoslovlje 46(2), 493532.Google Scholar
Perak, B. and Ban Kirigin, T. (2021). Dependency-based labeling of associative lexical communities. In Proceedings of the Central European Conference on Information and Intelligent Systems (CECIIS 2021).Google Scholar
Perek, F. (2015). Argument Structure in Usage-Based Construction Grammar: Experimental and Corpus-Based Perspectives, vol. 17. Amsterdam/Philadelphia: John Benjamins Publishing Company.Google Scholar
Progovac, L. (1998). Structure for coordination. Glot International 3(7), 36.Google Scholar
Qi, P., Zhang, Y., Zhang, Y., Bolton, J. and Manning, C.D. (2020). Stanza: A Python natural language processing toolkit for many human languages. arXiv preprint arXiv:2003.07082.Google Scholar
Raghavan, U.N., Albert, R. and Kumara, S. (2007). Near linear time algorithm to detect community structures in large-scale networks. Physical Review E 76(3), 036106.CrossRefGoogle ScholarPubMed
Reichardt, J. and Bornholdt, S. (2006). Statistical mechanics of community detection. Physical Review E 74(1), 016110.CrossRefGoogle ScholarPubMed
Rychlý, P. (2008). A lexicographer-friendly association score. In Proceedings of Recent Advances in Slavonic Natural Language Processing, RASLAN, 2008, p. 6.Google Scholar
Scarlini, B., Pasini, T. and Navigli, R. (2020a). Sensembert: Context-enhanced sense embeddings for multilingual word sense disambiguation. In Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 87588765.CrossRefGoogle Scholar
Scarlini, B., Pasini, T. and Navigli, R. (2020b). With more contexts comes better performance: Contextualized sense embeddings for all-round word sense disambiguation. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 35283539.CrossRefGoogle Scholar
Schütze, H. (1998). Automatic word sense discrimination. Computational Linguistics 24(1), 97123.Google Scholar
Sharifian, F. (2008). Distributed, emergent cultural cognition, conceptualisation, and language. In Sociocultural Situatedness. De Gruyter Mouton, pp. 109136.CrossRefGoogle Scholar
Sharifian, F. (2017). Cultural Linguistics: Cultural Conceptualisations and Language, vol. 8. Berlin/New York: John Benjamins Publishing Company.CrossRefGoogle Scholar
Sommerer, L. and Smirnova, E. (2020). Nodes and Networks in Diachronic Construction Grammar, vol. 27. Amsterdam/Philadelphia: John Benjamins Publishing Company.CrossRefGoogle Scholar
Stefanowitsch, A. and Gries, S.Th. (2003). Collostructions: Investigating the interaction of words and constructions. International Journal of Corpus Linguistics 8(2), 209243.CrossRefGoogle Scholar
Straka, M., Hajic, J. and Straková, J. (2016). UDPipe: Trainable pipeline for processing CoNLL-U files performing tokenization, morphological analysis, pos tagging and parsing. In Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC’16), pp. 42904297.Google Scholar
Taboada, M., Brooke, J., Tofiloski, M., Voll, K. and Stede, M. (2011). Lexicon-based methods for sentiment analysis. Computational Linguistics 37(2) 267307.CrossRefGoogle Scholar
Tarjan, R. (1972). Depth-first search and linear graph algorithms. SIAM Journal on Computing 1(2), 146160.CrossRefGoogle Scholar
Tomasello, M. and Brooks, P.J. (1999). Early Syntactic Development: A Construction Grammar Approach. Hove: Psychology Press.Google Scholar
Traag, V., Waltman, L. and van Eck, N.J. (2018). From Louvain to Leiden: guaranteeing well-connected communities. arXiv preprint arXiv:1810.08473.Google Scholar
Traag, V.A., Van Dooren, P. and Nesterov, Y. (2011). Narrow scope for resolution-limit-free community detection. Physical Review E 84(1), 016114.CrossRefGoogle ScholarPubMed
Tummers, J., Heylen, K. and Geeraerts, D. (2005). Usage-based approaches in Cognitive Linguistics: A technical state of the art. Corpus Linguistics and Linguistic Theory 1(2), 225261.CrossRefGoogle Scholar
Turney, P.D. (2008). A uniform approach to analogies, synonyms, antonyms, and associations. arXiv preprint arXiv:0809.0124.Google Scholar
Turney, P.D. (2012). Domain and function: A dual-space model of semantic relations and compositions. Journal of Artificial Intelligence Research 44, 533585.CrossRefGoogle Scholar
Ungerer, F. (2017). How Grammar Links Concepts: Verb-mediated Constructions, Attribution, Perspectivizing, vol. 57. Amsterdam/Philadelphia: John Benjamins Publishing Company.CrossRefGoogle Scholar
Universal Dependencies Project. (2014). Available at http://universaldependencies.org/u/dep/conj.html.Google Scholar
van Dalen, D. (2004). Logic and Structure. Berlin, Heidelberg: Springer.CrossRefGoogle Scholar
Van Oirsouw, R.R. (2019). The Syntax of Coordination. London: Routledge.CrossRefGoogle Scholar
Vasiliev, Y. (2020). Natural Language Processing with Python and SpaCy: A Practical Introduction. San Francisco: No Starch Press.Google Scholar
Velardi, P., Faralli, S. and Navigli, R. (2013). Ontolearn reloaded: A graph-based algorithm for taxonomy induction. Computational Linguistics 39(3), 665707.CrossRefGoogle Scholar
Wang, A., Pruksachatkun, Y., Nangia, N., Singh, A., Michael, J., Hill, F., Levy, O. and Bowman, S.R. (2019). Superglue: A stickier benchmark for general-purpose language understanding systems. arXiv preprint arXiv:1905.00537.Google Scholar
Widdows, D. and Dorow, B. (2002). A graph model for unsupervised lexical acquisition. In COLING 2002: The 19th International Conference on Computational Linguistics.Google Scholar
Wilson, T., Wiebe, J. and Hoffmann, P. (2009). Recognizing contextual polarity: An exploration of features for phrase-level sentiment analysis. Computational Linguistics 35(3), 399433.CrossRefGoogle Scholar
Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C. and Philip, S.Yu. (2020). A comprehensive survey on graph neural networks. IEEE Transactions on Neural Networks and Learning Systems 32(1), 424.CrossRefGoogle Scholar
Yih, W.-t. and Qazvinian, V. (2012). Measuring word relatedness using heterogeneous vector space models. In Proceedings of the 2012 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp. 616620.Google Scholar
Yoon, J. and Gries, S.Th. (2016). Corpus-based Approaches to Construction Grammar, vol. 19. Amsterdam: John Benjamins Publishing Company.CrossRefGoogle Scholar
Zhou, F., Qu, Q. and Toivonen, H. (2017). Summarisation of weighted networks. Journal of Experimental and Theoretical Artificial Intelligence 29(5), 10231052.CrossRefGoogle Scholar
Zhou, Y. and Srikumar, V. (2019). Beyond context: A new perspective for word embeddings. In Proceedings of the Eighth Joint Conference on Lexical and Computational Semantics (* SEM 2019), pp. 2232.CrossRefGoogle Scholar
Zih, H., El Biadi, M. and Chatri, Z. (2021). Evaluating the effectiveness of corpus linguistic software in analyzing the grammatical structure: LancsBox and AntConc as case studies. In 2020 6th IEEE Congress on Information Science and Technology (CiSt). IEEE, pp. 515519.Google Scholar