Published online by Cambridge University Press: 09 June 2006
We compare the word sense disambiguation systems submitted for the English-all-words task in SENSEVAL-2. We give several performance measures for the systems, and analyze correlations between system performance and word features. A decision tree learning algorithm is employed to discover the situations in which systems perform particularly well, and the resulting decision tree is examined. We investigate using a decision tree based on the SENSEVAL systems to (i) filter out senses unlikely to be correct, and to (ii) combine WSD systems. Some combinations created in this way outperform the best SENSEVAL system.