Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-25T01:16:15.850Z Has data issue: false hasContentIssue false

Towards universal methods for fake news detection

Published online by Cambridge University Press:  26 October 2022

Maria Pszona
Affiliation:
Samsung R&D Institute Poland, pl. Europejski 1, 00-844 Warsaw, Poland
Maria Janicka
Affiliation:
Samsung R&D Institute Poland, pl. Europejski 1, 00-844 Warsaw, Poland
Grzegorz Wojdyga
Affiliation:
Institute of Computer Science Polish Academy of Sciences, ul. Jana Kazimierza 5, 01-248 Warszawa, Poland
Aleksander Wawer*
Affiliation:
Samsung R&D Institute Poland, pl. Europejski 1, 00-844 Warsaw, Poland Institute of Computer Science Polish Academy of Sciences, ul. Jana Kazimierza 5, 01-248 Warszawa, Poland
*
*Corresponding author. E-mail: axw@ipipan.waw.pl

Abstract

Fake news detection is an emerging topic that has attracted a lot of attention among researchers and in the industry. This paper focuses on fake news detection as a text classification problem: on the basis of five publicly available corpora with documents labeled as true or fake, the task was to automatically distinguish both classes without relying on fact-checking. The aim of our research was to test the feasibility of a universal model: one that produces satisfactory results on all data sets tested in our article. We attempted to do so by training a set of classification models on one collection and testing them on another. As it turned out, this resulted in a sharp performance degradation. Therefore, this paper focuses on finding the most effective approach to utilizing information in a transferable manner. We examined a variety of methods: feature selection, machine learning approaches to data set shift (instance re-weighting and projection-based), and deep learning approaches based on domain transfer. These methods were applied to various feature spaces: linguistic and psycholinguistic, embeddings obtained from the Universal Sentence Encoder, and GloVe embeddings. A detailed analysis showed that some combinations of these methods and selected feature spaces bring significant improvements. When using linguistic data, feature selection yielded the best overall mean improvement (across all train-test pairs) of 4%. Among the domain adaptation methods, the greatest improvement of 3% was achieved by subspace alignment.

Type
Article
Copyright
© The Author(s), 2022. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahmed, H., Traore, I. and Saad, S. (2017). Detection of online fake news using N-gram analysis and machine learning techniques. In Traore I., Woungang I. and Awad A. (eds), Intelligent, Secure, and Dependable Systems in Distributed and Cloud Environments. Cham: Springer International Publishing, pp. 127138.Google Scholar
Allcott, H. and Gentzkow, M. (2017). Social media and fake news in the 2016 election. Journal of Economic Perspectives 31(2), 211–36.CrossRefGoogle Scholar
Augenstein, I., Lioma, C., Wang, D., Chaves Lima, L., Hansen, C., Hansen, C. and Simonsen, J.G. (2019). MultiFC: A real-world multi-domain dataset for evidence-based fact checking of claims. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), Hong Kong, China. Association for Computational Linguistics, pp. 46854697.CrossRefGoogle Scholar
Barrón-Cedeño, A., Elsayed, T., Nakov, P., Da San Martino, G., Hasanain, M., Suwaileh, R., Haouari, F., Babulkov, N., Hamdan, B., Nikolov, A., Shaar, S. and Ali, Z.S. (2020). Overview of checkthat! 2020: Automatic identification and verification of claims in social media. In Experimental IR Meets Multilinguality, Multimodality, and Interaction: 11th International Conference of the CLEF Association, CLEF 2020, Thessaloniki, Greece, September 22–25, 2020, Proceedings. Berlin, Heidelberg: Springer-Verlag, pp. 215236.CrossRefGoogle Scholar
Cer, D., Yang, Y., Kong, S.-y., Hua, N., Limtiaco, N., St. John, R., Constant, N., Guajardo-Cespedes, M., Yuan, S., Tar, C., Strope, B. and Kurzweil, R. (2018). Universal sentence encoder for English. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, Brussels, Belgium. Association for Computational Linguistics, pp. 169174.CrossRefGoogle Scholar
Chu, C. and Wang, R. (2018). A survey of domain adaptation for neural machine translation. In Proceedings of the 27th International Conference on Computational Linguistics, Santa Fe, New Mexico, USA. Association for Computational Linguistics, pp. 13041319.Google Scholar
Cochran, W.G. (1950). The comparison of percentages in matched samples. Biometrika 37(3/4), 256266.CrossRefGoogle ScholarPubMed
Coleman, M. and Liau, T.L. (1975). A computer readability formula designed for machine scoring. Journal of Applied Psychology 60(2), 283.CrossRefGoogle Scholar
Conroy, N.K., Rubin, V.L. and Chen, Y. (2015). Automatic deception detection: Methods for finding fake news. Proceedings of the Association for Information Science and Technology 52(1), 14.CrossRefGoogle Scholar
Demšar, J. (2006). Statistical comparisons of classifiers over multiple data sets. Journal of Machine Learning Research 7(1), 130.Google Scholar
Devlin, J., Chang, M.-W., Lee, K. and Toutanova, K. (2019). BERT: Pre-training of deep bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), Minneapolis, Minnesota. Association for Computational Linguistics, pp. 41714186.Google Scholar
Elsayed, T., Nakov, P., Barrón-Cedeño, A., Hasanain, M., Suwaileh, R., Da San Martino, G. and Atanasova, P. (2019). Overview of the clef-2019 checkthat! lab: Automatic identification and verification of claims. In Crestani F., Braschler M., Savoy J., Rauber A., Müller H., Losada D.E., Heinatz Bürki G., Cappellato L. and Ferro N. (eds), Experimental IR Meets Multilinguality, Multimodality, and Interaction. Cham: Springer International Publishing, pp. 301321.Google Scholar
Fernando, B., Habrard, A., Sebban, M. and Tuytelaars, T. (2013). Unsupervised visual domain adaptation using subspace alignment. In Proceedings of the 2013 IEEE International Conference on Computer Vision, ICCV’13. Washington, DC, USA: IEEE Computer Society, pp. 29602967.CrossRefGoogle Scholar
Flesch, R. (1948). A new readability yardstick. Journal of Applied Psychology 32(3), 221.CrossRefGoogle ScholarPubMed
Fu, L., Nguyen, T.H., Min, B. and Grishman, R. (2017). Domain adaptation for relation extraction with domain adversarial neural network. In Proceedings of the Eighth International Joint Conference on Natural Language Processing (Volume 2: Short Papers), Taipei, Taiwan. Asian Federation of Natural Language Processing, pp. 425429.Google Scholar
Ganin, Y. and Lempitsky, V. (2015). Unsupervised domain adaptation by backpropagation. In Proceedings of the 32nd International Conference on Machine Learning - Volume 37, ICML’15, pp. 11801189. JMLR.org.Google Scholar
Gong, B., Shi, Y., Sha, F. and Grauman, K. (2012). Geodesic flow kernel for unsupervised domain adaptation. In Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), CVPR’12. Washington, DC, USA: IEEE Computer Society, pp. 20662073.CrossRefGoogle Scholar
Gunning, R. (1969). The fog index after twenty years. Journal of Business Communication 6(2), 313.CrossRefGoogle Scholar
Horne, B. and Adali, S. (2017). This just in: Fake news packs a lot in title, uses simpler, repetitive content in text body, more similar to satire than real news. In Proceedings of the International AAAI Conference on Web and Social Media, pp. 759766.CrossRefGoogle Scholar
Janicka, M., Pszona, M. and Wawer, A. (2019). Cross-domain failures of fake news detection. Computación y Sistemas 23(3), 10891097.CrossRefGoogle Scholar
Jiang, J. and Zhai, C. (2007). Instance weighting for domain adaptation in NLP. In Proceedings of the 45th Annual Meeting of the Association of Computational Linguistics, Prague, Czech Republic. Association for Computational Linguistics, pp. 264271.Google Scholar
Khan, J.Y., Khondaker, M.T.I., Afroz, S., Uddin, G. and Iqbal, A. (2021). A benchmark study of machine learning models for online fake news detection. Machine Learning with Applications 4, 100032.CrossRefGoogle Scholar
Kincaid, J., Fishburne, R., Rogers, R. and Chissom, B. (1975). Research branch report 8–75. Memphis: Naval Air Station.Google Scholar
Kraskov, A., Stögbauer, H. and Grassberger, P. (2004). Estimating mutual information. Physical Review E 69, 066138.CrossRefGoogle ScholarPubMed
Leippold, M. and Diggelmann, T. (2020). Climate-fever: A dataset for verification of real-world climate claims. In NeurIPS 2020 Workshop on Tackling Climate Change with Machine Learning.Google Scholar
Levi, O., Hosseini, P., Diab, M. and Broniatowski, D. (2019). Identifying nuances in fake news vs. satire: Using semantic and linguistic cues. In Proceedings of the Second Workshop on Natural Language Processing for Internet Freedom: Censorship, Disinformation, and Propaganda, Hong Kong, China. Association for Computational Linguistics, pp. 3135.CrossRefGoogle Scholar
Liu, P., Qiu, X. and Huang, X. (2017). Adversarial multi-task learning for text classification. In Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), Vancouver, Canada. Association for Computational Linguistics, pp. 110.CrossRefGoogle Scholar
Nakov, P., Barrón-Cedeño, A., Elsayed, T., Suwaileh, R., Màrquez, L., Zaghouani, W., Atanasova, P., Kyuchukov, S. and Da San Martino, G. (2018). Overview of the clef-2018 checkthat! lab on automatic identification and verification of political claims. In Bellot P., Trabelsi C., Mothe J., Murtagh F., Nie J.Y., Soulier L., SanJuan E., Cappellato L. and Ferro, N. (eds), Experimental IR Meets Multilinguality, Multimodality, and Interaction, Cham: Springer International Publishing, pp. 372387.Google Scholar
Nakov, P., Corney, D., Hasanain, M., Alam, F., Elsayed, T., Barrón-Cedeño, A., Papotti, P., Shaar, S. and Da San Martino, G. (2021a). Automated fact-checking for assisting human fact-checkers. In Zhou, Z.-H. (ed), Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence, IJCAI-21. International Joint Conferences on Artificial Intelligence Organization, pp. 45514558.CrossRefGoogle Scholar
Nakov, P., Da San Martino, G., Elsayed, T., Barrón-Cedeño, A., Mguez, R., Shaar, S., Alam, F., Haouari, F., Hasanain, M., Babulkov, N., Nikolov, A., Shahi, G.K., Struß, J.M. and Mandl, T. (2021b). The clef-2021 checkthat! lab on detecting check-worthy claims, previously fact-checked claims, and fake news. In Advances in Information Retrieval: 43rd European Conference on IR Research, ECIR 2021, Virtual Event, March 28–April 1, 2021, Proceedings, Part II. Berlin, Heidelberg: Springer-Verlag, pp. 639649.CrossRefGoogle Scholar
Newman, M.L., Pennebaker, J.W., Berry, D.S. and Richards, J.M. (2003). Lying words: Predicting deception from linguistic styles. Personality and Social Psychology Bulletin 29(5), 665675.CrossRefGoogle ScholarPubMed
Pang, B. and Lee, L. (2004). A sentimental education: Sentiment analysis using subjectivity summarization based on minimum cuts. In Proceedings of the 42nd Annual Meeting of the Association for Computational Linguistics (ACL-04), Barcelona, Spain, pp. 271278.CrossRefGoogle Scholar
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M. and Duchesnay, E. (2011). Scikit-learn: Machine learning in Python. Journal of Machine Learning Research 12, 28252830.Google Scholar
Peng, H., Long, F. and Ding, C. (2005). Feature selection based on mutual information: Criteria of max-dependency, max-relevance, and min-redundancy. IEEE Transactions on Pattern Analysis and Machine Intelligence 27(8), 12261238.CrossRefGoogle ScholarPubMed
Pennebaker, J., Boyd, R., Jordan, K. and Blackburn, K. (2015). The development and psychometric properties of LIWC2015. Technical report, Austin, TX: University of Texas at Austin.Google Scholar
Pennington, J., Socher, R. and Manning, C. (2014). GloVe: Global vectors for word representation. In Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), Doha, Qatar. Association for Computational Linguistics, pp. 15321543.CrossRefGoogle Scholar
Pérez-Rosas, V., Kleinberg, B., Lefevre, A. and Mihalcea, R. (2018). Automatic detection of fake news. In Proceedings of the 27th International Conference on Computational Linguistics, Santa Fe, New Mexico, USA. Association for Computational Linguistics, pp. 33913401.Google Scholar
Peters, M.E., Neumann, M., Iyyer, M., Gardner, M., Clark, C., Lee, K. and Zettlemoyer, L. (2018). Deep contextualized word representations. In Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), New Orleans, Louisiana. Association for Computational Linguistics, pp. 22272237.CrossRefGoogle Scholar
Popat, K., Mukherjee, S., Yates, A. and Weikum, G. (2018). DeClarE: Debunking fake news and false claims using evidence-aware deep learning. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, Brussels, Belgium. Association for Computational Linguistics, pp. 2232.CrossRefGoogle Scholar
Potthast, M., Kiesel, J., Reinartz, K., Bevendorff, J. and Stein, B. (2018). A stylometric inquiry into hyperpartisan and fake news. In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), Melbourne, Australia. Association for Computational Linguistics, pp. 231240.CrossRefGoogle Scholar
Przybyla, P. (2020). Capturing the Style of Fake News. Proceedings of the AAAI Conference on Artificial Intelligence 34(01), 490497.CrossRefGoogle Scholar
Quionero-Candela, J., Sugiyama, M., Schwaighofer, A. and Lawrence, N.D. (2009). Dataset Shift in Machine Learning. Cambridge, Massachusetts. The MIT Press.Google Scholar
Rashkin, H., Choi, E., Jang, J.Y., Volkova, S. and Choi, Y. (2017). Truth of varying shades: Analyzing language in fake news and political fact-checking. In Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, Copenhagen, Denmark. Association for Computational Linguistics, pp. 29312937.CrossRefGoogle Scholar
Saito, K., Ushiku, Y., Harada, T. and Saenko, K. (2018). Adversarial dropout regularization. In International Conference on Learning Representations.Google Scholar
Santos, R., Pedro, G., Leal, S., Vale, O., Pardo, T., Bontcheva, K. and Scarton, C. (2020). Measuring the impact of readability features in fake news detection. In Proceedings of the 12th Language Resources and Evaluation Conference, Marseille, France. European Language Resources Association, pp. 14041413.Google Scholar
Schuster, T., Shah, D., Yeo, Y.J.S., Roberto Filizzola Ortiz, D., Santus, E. and Barzilay, R. (2019). Towards debiasing fact verification models. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), Hong Kong, China. Association for Computational Linguistics, pp. 34193425.CrossRefGoogle Scholar
Shu, K., Mahudeswaran, D., Wang, S., Lee, D. and Liu, H. (2020). Fakenewsnet: A data repository with news content, social context and dynamic information for studying fake news on social media. Big Data 8, 171188.CrossRefGoogle Scholar
Shu, R., Bui, H., Narui, H. and Ermon, S. (2018). A DIRT-t approach to unsupervised domain adaptation. In International Conference on Learning Representations.Google Scholar
Silva, A., Luo, L., Karunasekera, S. and Leckie, C. (2021). Embracing domain differences in fake news: Cross-domain fake news detection using multi-modal data. Proceedings of the AAAI Conference on Artificial Intelligence 35(1), 557565.CrossRefGoogle Scholar
Smith, E.A. and Senter, R. (1967). Automated readability index. AMRL-TR. Aerospace Medical Research Laboratories, pp. 114.Google ScholarPubMed
Stammbach, D. and Neumann, G. (2019). Team DOMLIN: Exploiting evidence enhancement for the FEVER shared task. In Proceedings of the Second Workshop on Fact Extraction and VERification (FEVER), Hong Kong, China. Association for Computational Linguistics, pp. 105109.CrossRefGoogle Scholar
Stone, P.J., Dunphy, D.C., Smith, M.S. and Ogilvie, D.M. (1966). The General Inquirer: A Computer Approach to Content Analysis. Cambridge, MA: The MIT Press.Google Scholar
Sun, B. and Saenko, K. (2016). Deep coral: Correlation alignment for deep domain adaptation. In Hua G. and Jégou, H. (eds), Computer Vision – ECCV 2016 Workshops. Cham: Springer International Publishing, pp. 443450.Google Scholar
Tchechmedjiev, A., Fafalios, P., Boland, K., Gasquet, M., Zloch, M., Zapilko, B., Dietze, S. and Todorov, K. (2019). Claimskg: A knowledge graph of fact-checked claims. In Ghidini C., Hartig O., Maleshkova M., Svátek V., Cruz I., Hogan A., Song J., Lefrançois M. and Gandon F. (eds), The Semantic Web – ISWC 2019. Cham: Springer International Publishing, pp. 309324.Google Scholar
Thorne, J., Vlachos, A., Christodoulopoulos, C. and Mittal, A. (2018). FEVER: A large-scale dataset for fact extraction and VERification. In Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), New Orleans, Louisiana. Association for Computational Linguistics, pp. 809819.CrossRefGoogle Scholar
Thorne, J., Vlachos, A., Cocarascu, O., Christodoulopoulos, C. and Mittal, A. (eds) (2019). Proceedings of the Second Workshop on Fact Extraction and VERification (FEVER), Hong Kong, China. Association for Computational Linguistics.Google Scholar
Tzeng, E., Hoffman, J., Zhang, N., Saenko, K. and Darrell, T. (2014). Deep domain confusion: Maximizing for domain invariance. CoRR, abs/1412.3474.Google Scholar
Vosoughi, S., Roy, D. and Aral, S. (2018). The spread of true and false news online. Science 359(6380), 11461151.CrossRefGoogle ScholarPubMed
Wadden, D., Lin, S., Lo, K., Wang, L.L., van Zuylen, M., Cohan, A. and Hajishirzi, H. (2020). Fact or fiction: Verifying scientific claims. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), Online. Association for Computational Linguistics, pp. 75347550.CrossRefGoogle Scholar
Wang, W.Y. (2017). “liar, liar pants on fire”: A new benchmark dataset for fake news detection. In Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers). Association for Computational Linguistics, pp. 422426.CrossRefGoogle Scholar
Wawer, A., Wojdyga, G. and Sarzyńska-Wawer, J. (2019). Fact checking or psycholinguistics: How to distinguish fake and true claims? In Proceedings of the Second Workshop on Fact Extraction and VERification (FEVER), Hong Kong, China. Association for Computational Linguistics, pp. 712.Google Scholar
Wilcoxon, F. (1945). Individual comparisons by ranking methods. Biometrics Bulletin 1(6), 8083.CrossRefGoogle Scholar
Wilson, G. and Cook, D.J. (2018). A survey of unsupervised deep domain adaptation. CoRR, abs/1812.02849.Google Scholar
Xu, H., Caramanis, C. and Mannor, S. (2009). Robustness and regularization of support vector machines. Journal of Machine Learning Research 10, 14851510.Google Scholar
Yang, Y., Zheng, L., Zhang, J., Cui, Q., Li, Z. and Yu, P.S. (2018). Ti-cnn: Convolutional neural networks for fake news detection. arXiv preprint arXiv:1806.00749.Google Scholar
Zellers, R., Holtzman, A., Rashkin, H., Bisk, Y., Farhadi, A., Roesner, F. and Choi, Y. (2019). Defending against neural fake news. In Wallach H., Larochelle H., Beygelzimer A., d’Alché-Buc F., Fox E. and Garnett, R. (eds), Advances in Neural Information Processing Systems, vol. 32. Curran Associates, Inc.Google Scholar
Zhou, X., Jain, A., Phoha, V.V. and Zafarani, R. (2020). Fake news early detection: A theory-driven model. Digital Threats: Research and Practice 1(2), 125.CrossRefGoogle Scholar