Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-25T18:35:16.044Z Has data issue: false hasContentIssue false

Diagnostic sedimentary structures of the fluvial-tidaltransition zone – Evidence from deposits of the Rhine andMeuse

Published online by Cambridge University Press:  19 June 2017

J.H. van den Berg*
Affiliation:
Department of Physical Geography, Utrecht University, P.O. Box 80115, 3508 TC Utrecht, the Netherlands
J.R. Boersma
Affiliation:
Department of Physical Geography, Utrecht University, P.O. Box 80115, 3508 TC Utrecht, the Netherlands
A. van Gelder
Affiliation:
Department of Physical Geography, Utrecht University, P.O. Box 80115, 3508 TC Utrecht, the Netherlands
*
*Corresponding author. Email: r.vandenberg@geo.uu.nl

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In mesotidal settings the transition of a coastal plain estuary to the riveris marked by the change of a multiple ebb and flood channel configuration toa single channel system. At high river discharge fluvial processes operate,whereas in periods of low discharge the flow is complicated by a tidalcomponent and a landward intrusion of the salt wedge. These hydraulic andmorphological characteristics make the transitional zone different from the‘pure’ fluvial and estuarine environment. Inspection of published andunpublished data from a number of outcrops of Recent and Tertiary depositsof the Rhine reveals that also in a sedimentary sense a transitional zonecan be recognized. In order to separate this zone from the upstream fluvialand downstream estuarine environment a sedimentological definition of thefluvial-tidal zone is proposed being the part of river that lies between thelandward limit of observable effects of tidal-induced flow deceleration onfluvial cross-bedding at low river discharge and the most seaward occurrenceof a textural or structural fluvial signature related to the high riverstage.

Type
Research Article
Copyright
Copyright © Stichting Netherlands Journal of Geosciences 2007

References

Allen, G.P., 1991. Sedimentary processes and facies in the Gironde estuary: a recent model for macrotidal estuarine systems. In: Smith, D.G., Reinson, G.E., Zaitlin, B.A. & Rahmani, R.A. (eds): Clastic Tidal Sedimentology: Canadian Society of Petroleum Geologists Memoir 16: 2940.Google Scholar
Allen, G.P. & Posamentier, H.W., 1993. Sequence stratigraphy and facies model of an incised valley fill: the Gironde estuary, France. Journal of Sedimentary Petrology 63: 378391.Google Scholar
Allen, J.R.L., 1965. A review of the origin and characteristics of recent alluvial sediments. Sedimentology 5: 89191.10.1111/j.1365-3091.1965.tb01561.xGoogle Scholar
Berendsen, H.J.A. & Stouthamer, E. 2001. Palaeogeographical development of the Rhine-Meuse delta, the Netherlands. Van Gorkum, Assen, the Netherlands: 268 pp.Google Scholar
Bridge, J.S. & Best, J.L., 1988. Flow, sediment transport and bedform dynamics over the transition from dunes to upper-stage plane beds: implications from the formation of planar laminae. Sedimentology, 35: 753763.10.1111/j.1365-3091.1988.tb01249.xGoogle Scholar
Boersma, J.R., 1967. Remarkable types of mega cross-stratification in the fluviatile sequence of a recent distributary of the Rhine, Amerongen, the Netherlands. Geologie en Mijnbouw 46: 217235.Google Scholar
Boersma, J.R. & Terwindt, J.H.J., 1981. Neap-spring tide sequences of intertidal shoal deposits in a mesotidal estuary. Sedimentology 28: 151170.10.1111/j.1365-3091.1981.tb01674.xGoogle Scholar
Brenon, I. & Le Hir, P., 1999. Modelling the turbidity maximum in the Seine estuary (France): identification of formation processes. Estuarine, Coastal and Shelf Science 49: 525544.10.1006/ecss.1999.0514Google Scholar
Brooks, G.R., 2003. Alluvial deposits of a mud-dominated stream: Red River, Manitoba, Canada. Sedimentology 50: 441458.10.1046/j.1365-3091.2003.00559.xGoogle Scholar
Clifton, H.E., 1994. Preservation of transgressive and highstand lat Pleistocene valley-fill/estuary deposits, Willapa Bay, Washington. In: Dalrymple, R.W., Boyd, R. & Zaitlin, (eds): Incised valley systems: origin and sedimentary sequences. SEPM Special Publication 51: 321333.Google Scholar
Collinson, J.D. & Lewin, J. (eds), 1983. Modern and Ancient Fluvial Systems. IAS Special Publication 6: 575 pp.Google Scholar
Cuevas Gózalo, M., 1985. Geometry and lithofacies of sediment bodies in a tidally influenced alluvial area. Middle Eocene, Southern Pyrenees, Spain. Geologie en Mijnbouw 64: 221231.Google Scholar
Dalrymple, R.W., Makino, Y. & Zaitlin, B.A., 1991. Temporal and spatial patterns of rhythmite deposition on mud flats in the macrotidal Cobequid Bay – Salmon River estuary, Bay of Fundy, Canada. In: Smith, D.G, Reinson, G.E., Zaitlin, B.A. & Rahmani, R.A. (eds): Clastic Tidal Sedimentology: Canadian Society of Petroleum Geologists Memoir 16: 137160.Google Scholar
Dalrymple, R.W., Zaitlin, B.A. & Boyd, R., 1992. Estuarine facies models: Conceptual basis and stratigraphie implications. Journal of Sedimentary Petrology 62: 11301146.10.1306/D4267A69-2B26-11D7-8648000102C1865DGoogle Scholar
Dalrymple, R.W., Baker, E.K., Harris, P.T. & Hughes, M., 2003. Sedimentology and stratigraphy of a tide-dominated, foreland-basin delta (Fly River, Papua New Guinea). In: Sidi, F.H., Nummedal, D., Imbert, P., Darman, H. & Posamentier, H.W. (eds): Tropical Deltas of Southeast Asia – Sedimentology, Stratigraphy and Petroleum Geology. SEPM Special Publication 76: 147173.Google Scholar
Dalrymple, R.W., 2006. Incised valleys in time and space: an introduction to the volume and an examination of the controls on valley formation and filling. In: Dalrymple, R.W., Lechin, D.A. & Tilman, R.W. (eds): Incised valleys in time and space. SEPM Special Publication 85: 512.Google Scholar
Dalrymple, R.W. & Choi, K., 2007. Morphologic and facies trends through the fluvial-marine transition in tide-dominated systems: A schematic framework for environmental and sequence-stratigraphic interpretation. Earth Science Reviews 81: 135174.10.1016/j.earscirev.2006.10.002Google Scholar
De Boer, P.L., Van Gelder, A. & Nio, S.D. (eds), 1998. Tide-influenced Sedimentary Environments and Facies. Reidel (Dordrecht): 530 pp.Google Scholar
De Mowbray, T., 1983. The genesis of lateral accretion deposits in recent intertidal mudflat channels, Solway Firth, Scotland. Sedimentology 30: 425435.10.1111/j.1365-3091.1983.tb00681.xGoogle Scholar
De Mowbray, T. & Visser, M.J., 1984. Reactivation surfaces in subtidal channel deposits, Oosterschelde, Southwest Netherlands. Journal of Sedimentary Petrology 54: 811824.Google Scholar
De Raaf, J.F.M. & Boersma, J.R., 1971. Tidal deposits and their sedimentary structures. Geologie en Mijnbouw 50: 479504.Google Scholar
Dyer, K.R., 1995. Sediment transport processes in estuaries. In: Perillo, G.M.E. (ed.): Geomorphology and sedimentology of estuaries. Developments in Sedimentology 53: 423449.10.1016/S0070-4571(05)80034-2Google Scholar
Eberth, D.A., 1996. Origin and significance of mud-filled incised valleys (Upper Cretaceous) in southern Alberta, Canada. Sedimentology 43: 459477.10.1046/j.1365-3091.1996.d01-15.xGoogle Scholar
Ehlers, T.A. & Chan, M.A., 1999. Tidal sedimentology and estuarine deposition of the Proterozoic Big Cottonwood Formation, Utah. Journal of Sedimentary Research 69: 11691180.10.2110/jsr.69.1169Google Scholar
Ethridge, F.G., Flores, R.M. & Harvey, M.D. (eds), 1987. Recent Developments in Fluvial Sedimentology. SEPM Special Publication 39: 389 pp.Google Scholar
Fenies, H., De Resseguier, A. & Tastet, J.- P., 1999. Intertidal clay-drape couplets (Gironde estuary, France). Sedimentology 46: 115.10.1046/j.1365-3091.1999.00196.xGoogle Scholar
Fielding, C.R. (ed.), 1993. Current Research in Fluvial Sedimentology., Sedimentary Geology, Special Issue 85: 656 pp.Google Scholar
Fielding, C.R., 2006. Upper now regime sheets, lenses and scour fills: Extending the range of architectural elements for fluvial sediment bodies. Sedimentary Geology, 190: 227240.10.1016/j.sedgeo.2006.05.009Google Scholar
Flemming, B.W. & Barthloma, A. (eds), 1995. Tidal Signatures in Modern and Ancient Sediments. IAS Special Publication 24: 358 pp.Google Scholar
Ginsburg, R.N. (ed.), 1975. Tidal Deposits – A Casebook of Recent Examples and Fossil Counterparts. Springer (New York): 428 pp.Google Scholar
Gliese, J. & Hager, H., 1978. On browncoal resources in the Lower Rhine Embayment (West Germany) Geologie en Mijnbouw 57: 517525.Google Scholar
Gosh, P., Sarkar, S. & Maulik, P., 2006. Sedimentology of a muddy alluvial deposit: Triassic Denwa Formation, India. Sedimentary Geology 191: 336.10.1016/j.sedgeo.2006.01.002Google Scholar
Harris, P.T., Bakker, E.K., Cole, A.R. & Short, S.A., 1993. A preliminary study of sédimentation in the tidally dominated Fly River delta, Gulf of Papua. Continental Shelf Research 13: 441472.10.1016/0278-4343(93)90060-BGoogle Scholar
Jiufa, L. & Chen, Z., 1998. Sediment resuspension and implications for turbidity maximujm in the Chianghiang Estuary. Marine Geology 48: 117124.Google Scholar
Jopling, A. V., 1965. Some applications of theory and experiment to the study of bedding genesis. Sedimentology 7: 71102.Google Scholar
Jones, B.G., Martin, G.R., & Senapati, N., 1993. Riverine-tidal interactions in the monsoonal Gilbert River fandelta, northern Australia. Sedimentary Geology 83: 319337.10.1016/0037-0738(93)90019-2Google Scholar
Julien, P.Y. & Klaassen, G.J., 1995. Sand-dune geometry of large rivers during floods. Journal of Hydraulic Engineering 121: 657663.10.1061/(ASCE)0733-9429(1995)121:9(657)Google Scholar
Kvale, E.P., Archer, A.W. & Johnson, H.R., 1991. Daily, monthly, and yearly tidal cycles within laminated siltstones of the Mansfield Formation (Pennsylvanián) of Indiana. Geology 17: 365368.Google Scholar
Lanier, W.P., Feldman, H.R. & Archer, A.W., 1993. Tidal sedimentation from a fluvial to estuarine transition, Douglas Group, Missourain – Virgillian, Kansas. Journal of Sedimentary Petrology 63: 860873.Google Scholar
Lanzoni, S. & Seminara, G., 1998. On tide propagation in convergent estuaries with lateral depth variation. Journal of Geophysical Research C 103: 30793 30812.10.1029/1998JC900015Google Scholar
Makaske, B. & Nap, R.L., 1995. A transition from a braided to a meandering channel facies, showing inclined heterolithic stratification (late Weichselian, central Netherlands). Geologie en Mijnbouw 74: 1320.Google Scholar
Martinius, A.W., Kaas, I., Næss, A., Helgesen, G., Kjærefjord, J.M. & Leith, D.A., 2001. Sedimentology of the heterolithic and tide-dominated Tilje Formation (Early Jurassic, Halten Terreace, offshore mid-Norway). In: Martinsen, O.J. & Dreyer, T. (eds): Sedimentary Environments Offshore Norway – Paleozoic to Recent: Nowegian Petroleum Society, Special Publication 10. Amsterdam, Elsevier: 103144.Google Scholar
Marzo, M. & Puigdefabrejas, C. (eds), 1993. Alluvial Sedimentation. IAS Special Publication 17: 640 pp.Google Scholar
Miall, A.D., 1996. The geology of fluvial deposits: sedimentary facies, basin analysis and petroleum geology: Springer-Verlag Inc. (Berlin): 582 p.Google Scholar
Middelkoop, H. & Ruessink, B.G., 2000. Analyse historische waterstanden Maas – Benedenrivierengebied II. Report ICG 00/8, Department oí Physical Geography, Utrecht University, the Netherlands: 80 pp.Google Scholar
Nichols, G., 1999. Sedimentology & Stratigraphy. Blackwell, Oxford: 355 pp.Google Scholar
Nouidar, M. & Chellaï, E.H., 2001 Facies and sequence stratigraphy of an estuarine incised-valley fill: Lower Aptian Bouzergoun Formation, Agadir Basin, Morocco. Creteceous Research 22: 93104.10.1006/cres.2000.0239Google Scholar
Perillo, G.M.E., 1995. Definition and géomorphologie classification of estuaries. In: Perillo, G.M.E. (ed.): Geomorphology and sedimentology of estuaries. Developments in Sedimentology 53: 1747.10.1016/S0070-4571(05)80022-6Google Scholar
Plink-Björklund, P., 2005. Stacked fluvial and tide-dominated estuarine deposits in high-frequency (fourth-order) sequences of the Eocene Central Basin, Spitsbergen. Sedimentology 52: 391428.10.1111/j.1365-3091.2005.00703.xGoogle Scholar
Pritchard, D.W., 1967. What is an estuary? Physical viewpoint. In: Lauff, G.H. (ed.): Estuaries. American Association for the Advancement of Science, Publication 83: 35.Google Scholar
Reading, H.G. (ed.), 1996. Sedimentary Environments: processes, facies and stratigraphy. Blackwell, Oxford: 688 pp.Google Scholar
Reineck, H.-E., 1970. Das Watt, Ablagerungs- und Lebensraum. Kramer, Frankfurt am Main, Western Germany: 141 pp.Google Scholar
Reineck, H.-E. & Singh, I.B., 1980. Depositional Sedimentary Environments – with reference to terrigenous clastic, 2nd edition. Springer, Berlin: 549 pp.Google Scholar
Roep, Th.B., 1991. Neap-spring cycles in a subrecent tidal channel fill (3665 BP) at Schoorldam, NW Netherlands. Sedimentary Geology 71: 213230.10.1016/0037-0738(91)90103-KGoogle Scholar
Roe, S-L., 1987. Cross-strata and bedforms of probable transitional dune to upper-stage plane-bed origin from a Late Precambrian fluvial sandstone, northern Norway. Sedimentology 34: 89101.10.1111/j.1365-3091.1987.tb00562.xGoogle Scholar
Schrottke, K., Becker, M., Bartholomä, & Flemming, B.W., 2006. Fluid mud dynamics in the Weser estuary turbidity zone tracked by high-resolution side-scan sonar and parametric sub-bottom profiler. Geo-Marine Letters 26: 185198.10.1007/s00367-006-0027-1Google Scholar
Shanley, K.W., McCabe, P.J. & Hattinger, R.D., 1992. Tidal influence in Cretaceous fluvial strata from Utah, USA: a key to sequence stratigraphie interpretation. Sedimentology 39: 905930.10.1111/j.1365-3091.1992.tb02159.xGoogle Scholar
Smith, O.G., 1987. Modern point bar deposits analogous to the Athabasca Oil Sands, Alberta, Canada. In: De Boer, P.L., Van Gelder, A. & Nio, S.D. (eds): Tide-influenced Sedimentary Environments and Facies. Reidel, Dordrecht, the Netherlands: 417432.Google Scholar
Smith, D.G., Reinson, G.E., Zaitlin, B.A.. & Rahmani, R.A.. (eds), 1991. Clastic Tidal Sedimentology, Mem. Can. Soc. Petrol. Geol. 16: 387 pp.Google Scholar
Smith, N.D. & Rogers, J. (eds), 1999. Fluvial Sedimentology. SEPM Special Publication 28: 478 pp.Google Scholar
Stanley, K.O. & Surdam, R.C., 1978. Sedimentation on the front of Eocene Gilbert-type deltas, Washaki Basin, Wyoming. Journal of Sedimentary Petrology 48: 557573.Google Scholar
Terwindt, J.H.J., 1971. Litho-facies of inshore estuarine and tidal-inlet deposits. Geologie en Mijnbouw 50: 515526.Google Scholar
Terwindt, J.H.J., 1988. Palaeo-tidal reconstructions of inshore tidal depositional environments. In: De Boer, P.L., Van Gelder, A. & Nio, S.D. (eds): Tide-Influenced Sedimentary Environments and Facies. Reidel, Boston: 233263.Google Scholar
Tessier, B., 1993. Upper intertidal rhythmites in the Mont-Saint Michel Bay (NW France): perspectives for paleoreconstruction. Marine Geology 110: 355367.10.1016/0025-3227(93)90093-BGoogle Scholar
Therrien, F., 2005. Palaeoenvironments of the latest Cretaceous (Maastrichtian) dinosaurs of Romania: insights from fluvial deposits and paleosols of the Transylvanian and Hang basins. Palaeogeography, Palaeoclimatology, Palaeoecology 218: 1556.10.1016/j.palaeo.2004.12.005Google Scholar
Thomas, R.G., Smith, D.G., Wood, J.M., Visser, J., Calverley-Range, E.A. & Koster, E.H., 1987. Inclined heterolithic stratification – Terminology, description and siginificance. Sedimentary Geology 53: 123179.10.1016/S0037-0738(87)80006-4Google Scholar
Uncles, R.J., Stephens, J.A. & Law, D.J., 2006. Turbidity maximum in the macrotidal, highly turbid Humber Estuary, UK: floes, fluid mud, stationary suspensions and tidal bores. Estuarine Coastal and Shelf Science 67: 3052.10.1016/j.ecss.2005.10.013Google Scholar
Urien, C.M., 1972. Rio de la Plata estuary environments. Geological Society of America Memoir, 133: 213234.10.1130/MEM133-p213Google Scholar
Van Beek, J.L. & Koster, E.A., 1972. Fluvial and estuarine sediments exposed along the Oude Maas (the Netherlands). Sedimentology 19: 237256.10.1111/j.1365-3091.1972.tb00023.xGoogle Scholar
Van den Berg, J.H., 1981. Rhythmic Seasonal Layering in a Mesotidal Channel Fill Sequence, Oosterschelde Mouth, the Netherlands. IAS Special Publication 5: 147159.Google Scholar
Van den Berg, J.H., 1982. Migration of Large-Scale Bedforms and Preservation of Crossbedded sets in Highly Accretional Parts of Tidal Channels in the Oosterschelde, SW Nether-lands. Geologie en Mijnbouw 61: 253263.Google Scholar
Van den Berg, J.H., 1986. Aspects of Sediment and Morphodynamics of Subtidal Deposits of the Oosterschelde (the Netherlands). Thesis (Utrecht): 126 pp.Google Scholar
Van den Berg, J.H., Asselman, N.E.M. & Ruessink, B.G., 1995. Hydraulic Roughness of a Tidal Channel, Westerschelde Estuary, the Netherlands. IAS Special Publication 24: 1932.Google Scholar
Van den Berg, J.H., Jeuken, M.C.J.L., & Van der Spek, A.F.J., 1996. Hydraulic processes affecting the morphology and evolution of the Westerschelde estuary. In: Nordstrom, K.F. & Roman, C.T. (eds): Estuarine shores: evolution, environments and human alternations. Wiley, London: 157184.Google Scholar
Van der Spek, A.J.F., 1997. Tidal asymmetry and long-term evolution of Holocene tidal basins in the Netherlands: simulation of paleo-tides in the Schelde estuary. Marine Geology: 7190.Google Scholar
Van Gelder, A., Van den Berg, J.H., Cheng, G. & Xue, C., 1994. A Depositional Model of the Modern Yellow River Delta. Sedimentary Geology 90: 293305.10.1016/0037-0738(94)90044-2Google Scholar
Van Rijn, L.C., 1984. Sediment transport, Part III: Bed forms and alluvial roughness. Journal of Hydraulic Engineering, 110: 17331754.10.1061/(ASCE)0733-9429(1984)110:12(1733)Google Scholar
Van Straaten, L.M.J.U., 1954. Composition and structure of Recent marine sediments in the Netherlands. Leidse Geologische Mededelingen, 19: 1110.Google Scholar
Van Veen, J., 1950. Eb- en vloedschaarsystemen in de Nederlandse getij wateren. Tijdschrift Koninklijk Nederlands Aardrijkskundig Genootschap, 2d series 67: 303325.Google Scholar
Wang, Z.B., Jeuken, M.C.J.L., Gerritsen, H. De Vriend, H.J. & Komman, B.A., 2002. Morphology and asymmetry of the vertical tide in the Westerschelde estuary. Continental Shelf Research 22: 25992609.10.1016/S0278-4343(02)00134-6Google Scholar
Wells, J.T., 1995. Tide-dominated estuaries and tidal rivers. In: Perillo, G.M.E. (ed.): Geomorphology and sedimentology of estuaries. Developments in Sedimentology 53: 179205.10.1016/S0070-4571(05)80026-3Google Scholar
Williams, G.E., 1989. Tidal rhythmites: geochronometers for ancient Earth-Moon system. Episodes 12: 162171.Google Scholar
Willis, A.J., 2000. Tectonic control of nested sequence architecture in the Sego Sandstone, Neslen Fromation and Upper Castlegate Sandstone (Upper Cretaceous), Sevier foreland basin, Utah, USA. Sedimentary Geology 136: 277317.10.1016/S0037-0738(00)00087-7Google Scholar
Wright, L.D., Coleman, J.M. & Thorn, B.G., 1975. Sediment transport and deposition in a macrotidal river channel, Ord River, Western Australia. In: Cronin, L.E. (ed.): Estuarine Research 2: 309322.Google Scholar
Yoshida, S., 2000. Sequence and facies architecture of the upper Blackhawk Formation and the Lower Castlegate Sandstone (Upper Cretaceous), Book Cliffs, Utah, USA. Sedimentary Geology 136: 239276.10.1016/S0037-0738(00)00104-4Google Scholar
Ziegler, P.A., 1990. Geological atlas of western and central Europe. Shell Int. Petr. Company, Den Haag.Google Scholar