Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-27T11:50:49.332Z Has data issue: false hasContentIssue false

Did mosasaurs have forked tongues?

Published online by Cambridge University Press:  01 April 2016

A.S. Schulp*
Affiliation:
Natuurhistorisch Museum Maastricht, De Bosquetplein 6, NL-6211 KJ Maastricht, the Netherlands Faculty of Earth and Life Sciences, Vrije Universiteit Amsterdam, the Netherlands
E.W.A. Mulder
Affiliation:
Natuurhistorisch Museum Maastricht, De Bosquetplein 6, NL-6211 KJ Maastricht, the Netherlands Museum Natura Docet, Denekamp, the Netherlands
K. Schwenk
Affiliation:
Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269-3043, USA
*
* Corresponding author. Email: anne.schulp@maastricht.nl

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Ever since the first mosasaur restorations were published, these extinct marine reptiles have been pictured with either notched, forked or undivided tongues. Here, we present an overview of existing iconography, a review of the previous literature, and we discuss how best to reconstruct tongue form in mosasaurs. Despite disagreement about their precise phylogenetic position, most authors consider mosasaurs members of the Varanoidea, derived anguimorphans including Helodermatidae, Varanidae, Lanthanotus and probably snakes. All anguimorphans share a diploglossan (two-part) tongue, in which the foretongue is derived and modified into a highly protrusible chemosensor, while the hindtongue is plesiomorphic, retaining well-developed papillae, mucocytes and robust posterior lobes. We suggest that mosasaurs had a diploglossan tongue that remained in a relatively underived state. The form of the tongue would probably have been most like modern Heloderma or Lanthanotus with a protrusible chemosensory foretongue and a plesiomorphic, papillose hindtongue. Such a tongue is consistent with well-developed vomeronasal chemoreception through tongue-flicking, with the retention of the ancestral function of hyolingual food transport and swallowing following jaw-prehension of prey. The presence of paired fenestrae in the palate associated with the vomers, as well as the presence of pterygoid teeth are in accordance with such a tongue form in mosasaurs.

Type
Research Article
Copyright
Copyright © Stichting Netherlands Journal of Geosciences 2005

References

Bardet, N. & Jagt, J.W.M., 1996. Mosasaurus hoffmanrti, le ‘Grand Animal fossile des Carrières de Maestrich’: deux siècles d’histoire. Bulletin du Muséum national d’Histoire naturelle de Paris (4)18(C4): 569–593.Google Scholar
Baut, G., 1890. On the characters and systematic position of the large sea-lizards, Mosasauridae. Science 16: 262.Google Scholar
Bell, G.L. Jr., 1997. A phylogenetic revision of North American and Adriatic Mosasauroidea. In: Callaway, J.M. & Nicholls, E.L. (eds): Ancient Marine Reptiles. Academic Press (San Diego): 293–332.Google Scholar
Bellairs, A. d’A. & Boyd, J.D., 1950. The lachrymal apparatus in lizards and snakes. II. The anterior part of the lachrymal duct and its relationship with the palate and with the nasal and vomeronasal organs. Proceedings of the Zoological Society, London 120: 269–310.Google Scholar
Bramble, D.M. & Wake, D.B., 1985. Feeding mechanisms of lower tetrapods. In: Hildebrand, M., Bramble, D.M., Liem, K.F. & Wake, D.B. (eds): Functional Vertebrate Morphology. Harvard Univ. Press (Cambridge, Massachusetts): 230–261.Google Scholar
Bryant, H.N. & Russell, A.P., 1992. The role of phylogenetic analysis in the inference of unpreserved attributes of extinct taxa. Philosophical Transactions of the Royal society, London B337: 405–418.Google Scholar
Caldwell, M. W., 1999. Squamate phytogeny and the relationships of snakes and mosasauroids. Zoological Journal of the Linnean Society 125: 115–147.Google Scholar
Caldwell, M.W., Carroll, R.L. & Kaiser, H., 1995. The pectoral girdle and front limb of Carsosaurus marchesetti (Aigialosauridae), with a preliminary phylogenetic analysis of varanoids and mosasauroids. Journal of Vertebrate Paleontology 15: 516–531.Google Scholar
Camp, C.L., 1923. Classification of the lizards. Bulletin of the American Museum of Natural History 48: 289–481.Google Scholar
Camp, C.L., 1942. California Mosasaurs. Memoirs of the University of California 13(1): 68 pp.Google Scholar
Camper, A.G., 1800. Lettre de A.G. Camper à G.Cuvier, Sur les ossemens fossiles de la montagne de St. Pierre, à Maëstricht. Journal de Physique, 51: 278–291.Google Scholar
Carroll, R.L., 1988. Vertebrate Paleontology and Evolution. W. H. Freeman (New York), 698 pp.Google Scholar
Cleuren, J. & de Vree, F., 2000. Feeding in crocodilians. In: Schwenk, K. (ed.): Feeding. Form, Function and Evolution in Tetrapod Vertebrates. Academic Press (San Diego): 337–358.Google Scholar
Conybeare, W.D., 1822. In: Parkinson, J. (ed.). An introduction to the study of fossil organic remains (London), vii + 344 pp.Google Scholar
Cope, E.D., 1869a. On the reptilian orders Pythonomorpha and Streptosauria. Proceedings of the Boston Society of Natural History 12: 250–266.Google Scholar
Cope, E.D., 1869b. The fossil reptiles of New Jersey. American Naturalist 3: 84–91.Google Scholar
Cundall, D. & Greene, H.W., 2000. Feeding in snakes. In: Schwenk, K. (ed.): Feeding. Form, Function and Evolution in Tetrapod Vertebrates. Academic Press (San Diego): 293–333.Google Scholar
Cuvier, G., 1808. Sur le grand animal fossile des carrières de Maëstricht. Annales du Muséum national d’Histoire naturelle (Paris) 12: 145–176.Google Scholar
Dollo, L., 1889. Première note sur les mosasauriens de Mesvin. Bulletin de la Société belge de Géologie, de Paléontologie et d’Hydrologie 3: 271–304.Google Scholar
Dollo, L., 1909. The fossil vertebrates of Belgium. Annals of the New York Academy of Sciences, 19: 99–119.Google Scholar
Elias, J.A., McBrayer, L.D. & Reilly, S.M., 2000. Transport kinematics in Tupinambis teguixin and Varanus exanthematicus: conservation of feeding behavior in ‘chemosenory-tongued’ lizards. Journal of Experimental Biology 203: 791–801.Google Scholar
Estes, R., de Queiroz, K. & Gauthier, J., 1988. Phylogenetic relationships within Squamata. In: Estes, R. & Pregili, G. (eds): Phylogenetic Relationships of the Lizard Families. Stanford Univ. Press (Stanford, California): 119–281.Google Scholar
Everhart, M.J., 2004. Plesiosaurs as the food of mosasaurs; new data on the stomach contents of a Tylosaurus proriger (Squamata; Mosasauridae) from the Niobrara Formation of western Kansas. The Mosasaur 7: 41–46.Google Scholar
Farlow, J.O. & Brett-Surman, M.K. (eds), 1997. The Complete Dinosaur. Indiana University Press, Bloomington: 753 pp.Google Scholar
Figuier, L., 1863. La terre avant le Déluge: Ouvrage contenant 24 vues idéales de paysages de l’ancien monde dessinées par Riou. Hachette (Paris), 432 pp.Google Scholar
Gans, C., 1969. Comments on inertial feeding. Copeia 1969: 855–857.Google Scholar
Gao, K. & Norell, M.A., 1998. Taxonomie revision of Carusia (Reptilia: Squamata) from the Late Cretaceous of the Gobi Desert and phylogenetic relationships of anguimorphan lizards. American Museum Novitates 3230: 1–51.Google Scholar
Greene, H.W., 1997. Snakes. The Evolution of Mystery in Nature. University of California Press (Berkeley, California), 351 pp.Google Scholar
Halpern, M., 1992. Nasal chemical senses in reptiles: structure and function. In: Gans, C. & Crews, D. (eds): Biology of the Reptilia, vol. 18. University of Chicago Press (Chicago): 423–523.Google Scholar
Heatwole, H., 1999. Sea Snakes. Krieger Publishing Company (Malabar, FL, USA): vi + 148 pp. (second edition).Google Scholar
Kauffman, E.G., 2004. Mosasaur Predation on Upper Cretaceous nautiloids and ammonites from the United States Pacific coast. Palaios 19: 96–100.Google Scholar
Kauffman, E.G. & Kesling, R.V., 1960. An Upper Cretaceous ammonite bitten by a mosasaur. Contributions from the Museum of Paleontology, University of Michigan 15: 193–248.Google Scholar
Langebartel, D.A., 1968. The Hyoid and its Associated Musculature in Snakes. Illinois Biological Monographs 38: 1–156.Google Scholar
Lee, M.S.Y., 1997. The phylogeny of varanoid lizards and the affinities of snakes. Philosophical Transactions of the Royal Society of London B 352: 53–91.Google Scholar
Lee, M.S.Y., 1998. Convergent evolution and character correlation in burrowing reptiles: towards a resolution of squamate relationships. Biological Journal of the Linnean Society 65:369–453.Google Scholar
Lee, M.S.Y., Bell, G.L. Jr. & Caldwell, M.W., 1999. The origin of snake feeding. Nature 400: 655–659.Google Scholar
Lee, M.S.Y. & Caldwell, M.W., 2000. Adriosaurus and the affinities of mosasaurs, dolichosaurs, and snakes. Journal of Paleontology 74: 915–937.Google Scholar
Lever, A.J., 1990. Mosasaurus, van bot tot beeld. Natuurhistorisch Museum Maastricht Uitgave 2: 24 pp.Google Scholar
Li, C., Rieppel, O. & LaBarbera, M.C., 2004. A Triassic aquatic protorosaur with an extremely long neck. Science 305: 1931.Google Scholar
Lingham-Soliar, T., 1995. Anatomy and functional morphology of the largest marine reptile known, Mosasaurus hoffmanni (Mosasauridae, Reptilia) from the Upper Cretaceous, Upper Maastrichtian of The Netherlands. Philosophical Transactions of the Royal Society of London, B 347: 155–180.Google Scholar
Losos, J.B. & Greene, H.W., 1988. Ecological and evolutionary implications of diet in monitor lizards. Biological Journal of the Linnean Society 35: 379–407.Google Scholar
Mantell, G.A., 1829. A tabular arrangement of the organic remains of the county of Sussex. Transactions of the Geological Society of London (2)3: 201–216.Google Scholar
Martin, J.E. & Bjork, P.R., 1987. Gastric residues associated with a mosasaur from the Late Cretaceous (Campanian) Pierre Shale in South Dakota. In: Martin, J.E., Ostrander, G.E. (eds): Papers in Vertebrate Paleontology in Honor of Morton Green. Dakoterra 3: 68–72.Google Scholar
Martin, J.E. & Fox, J.E., 2004. Molluscs in the stomach contents of Globidens, a shell-crushing mosasaur, from the late Cretaceous Pierre Shale, Big Bend area of the Missouri river, central South Dakota. Geological Society of America, Abstracts with Programs 36: 80.Google Scholar
Martin, J.E., Schumacher, B.A., Parris, D.C. & Grundstoff, B.S., 1998. Fossil vertebrates of the Niobrara Formation in South Dakota. Dakoterra 5: 39–54.Google Scholar
Massare, J.A., 1987. Tooth morphology and prey preference of Mesozoic marine reptiles. Journal of Vertebrate Paleontology 7: 121–137.Google Scholar
McDowell, S.B., 1972. The evolution of the tongue of snakes, and its bearing on snake origins. In: Dobzhansky, T., Hecht, M.K. & Steere, W.C. (eds): Evolutionary Biology, vol. 6. Appleton-Century-Crofts (New York): 191–273.Google Scholar
McDowell, S.B. Jr. & Bogert, C.M., 1954. The systematic position of Lanthanotus and the affinities of the anguinomorphan (sic) lizards. Bulletin of the American Museum of Natural History 105: 1–142.Google Scholar
Mulder, E.W.A., 2003. On latest Cretaceous tetrapods from the Maastrichtian type area. Publicaties van het Natuurhistorisch Genootschap in Limburg 44(1): 188 pp.Google Scholar
Osborn, H.F., 1899. A complete mosasaur skeleton, osseous and cartilaginous. Science 10: 919–925.Google Scholar
Pregili, G.K., Gauthier, J.A. & Greene, H.W., 1986. The evolution of helodermatid lizards, with description of a new taxon and an overview of Varanoidea. Transactions of the San Diego Society of Natural History 21: 167–202.Google Scholar
Rieppel, O., 1981. The hyobranchial skeleton in some little known lizards and snakes. Journal of Herpetology 15: 433–440.Google Scholar
Rieppel, O. & Zaher, H., 2000a. The braincase of mosasaurs and Varanus, and the relationships of snakes. Zoological Journal of the Linnean Society 129: 489–514.Google Scholar
Rieppel, O. & Zaher, H., 2000b. The intramandibular joint in squamates, and the phylogenetic relationships of the fossil snake Pachyrhachis problematicus Haas. Fieldiana, Geology. New Series 43: 1–69.Google Scholar
Rieppel, O. & Zaher, H., 2001. Re-building the bridge between mosasaurs and snakes. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen 221: 111–132.Google Scholar
Romer, A.S., 1966. Vertebrate Paleontology, 3rd ed. University of Chicago Press (Chicago), 468 pp.Google Scholar
Russell, D.A., 1967. Systematics and morphology of American mosasaurs. Bulletin of the Peabody Museum of Natural History (Yale) 23: 1–240.Google Scholar
Schulp, A.S., 2005. Feeding the mechanical mosasaur: what did Carinodens eat?In: Schulp, A.S. & Jagt, J.W.M., (eds): Proceedings of the First Mosasaur Meeting. Netherlands Journal of Geosciences 84: 345–357.Google Scholar
Schwenk, K., 1985. Occurrence, distribution and functional significance of taste buds in lizards. Copeia 1985: 91–101.Google Scholar
Schwenk, K., 1988. Comparative morphology of the lepidosaur tongue and its relevance to squamate phylogeny. In: Estes, R. & Pregili, G. (eds): Phylogenetic Relationships of the Lizard Families. Stanford University Press (Stanford, California): 569–598.Google Scholar
Schwenk, K., 1993. The evolution of chemoreception in squamate reptiles: a phylogenetic approach. Brain, Behavior and Evolution 41: 124–137.Google Scholar
Schwenk, K., 1994. Why snakes have forked tongues. Science 263: 1573–1577.Google Scholar
Schwenk, K., 1995. Of tongues and noses: chemoreception in lizards and snakes. Trends in Ecology and Evolution 10: 7–12.Google Scholar
Schwenk, K., 2000. Feeding in lepidosaurs. In: Schwenk, K. (Ed.): Feeding. Form, Function and Evolution in Tetrapod Vertebrates. Academic Press (San Diego): 175–291.Google Scholar
Schwenk, K. & Rubega, M., 2005. Diversity of vertebrate feeding systems. In: Starek, J.M. & Wang, T. (eds): Physiological and Ecological Adaptations to Feeding in Vertebrates. Science Publishers (Enfield, New Hampshire): 1–41.Google Scholar
Schwenk, K. & Throckmorton, G.S., 1989. Functional and evolutionary morphology of lingual feeding in squamate reptiles: phylogenetics and kinematics. Journal of Zoology, London 219: 153–175.Google Scholar
Schwenk, K. & Wagner, G.P., 2001. Function and the evolution of phenotypic stability: connecting pattern to process. American Zoologist 41: 552–563.Google Scholar
Shine, R., Shine, T. & Shine, B., 2003. Intraspecific habitat partitioning by the sea snake Emydocephalus annulatus (Serpentes, Hydrophiidae) : the effects of sex, body size, and colour pattern. Biological Journal of the Linnean Society 80: 1–10.Google Scholar
Shine, R., Bonnet, X., Elphick, M.J. & Barrott, E.G., 2004. A novel foraging mode in snakes: browsing by the sea snake Emydocephalus annulatus (Serpentes, Hydrophiidae). Functional Ecology 18: 16–24.Google Scholar
Smith, K.K., 1986. Morphology and function of the tongue and hyoid apparatus in Varanus (Varanidae, Lacertilia). Journal of Morphology 187: 261–287.Google Scholar
Smith, K.K. & MacKay, K.A., 1990. The morphology of the intrinsic tongue musculature of snakes (Reptilia, Ophidia): functional and phylogenetic implications. Journal of Morphology 205: 307–324.Google Scholar
Sternberg, C.H., 1898. Ancient monsters of Kansas. Popular Science News 32: 268.Google Scholar
Stewart, J.D. & Carpenter, K., 1990. Examples of vertebrate predation on cephalopods in the late Cretaceous of the Western Interior. In: Boucout, A.J. (ed.): Evolutionary paleobiology of behaviour and coevolution. Elsevier (New York) pp. 203–208.Google Scholar
Townsend, T.M., Larson, A., Louis, E. & Macey, J.R., 2004. Molecular phylogenetics of Squamata: the position of snakes, amphisbaenians, and dibamids, and the root of the squamate tree. Systematic Biology 53: 735–757.Google Scholar
Vidal, N. & Hedges, S.B., 2004. Molecular evidence for a terrestrial origin of snakes. Proceedings of the Royal Society, London B (Supplement) 271: S226S229.Google Scholar
Vitt, L.J., Pianka, E.R., Cooper, W.E. Jr& Schwenk, K., 2003. History and the global ecology of squamate reptiles. The American Naturalist 162: 44–60.Google Scholar
Wagner, G.P. & Schwenk, K., 2000. Evolutionarily stable configurations: functional integration and the evolution of phenotypic stability. In: Hecht, M.X., Maclntyre, R.J. & Clegg, M.T. (eds): Evolutionary Biology, vol. 31. Plenum Press (New York): 155–217.Google Scholar
Williston, S.W., (ed.), 1898a. Upper Cretaceous. University of Kansas Geological Survey 4, Paleontology, Part I: 28–32.Google Scholar
Williston, S.W., (ed.), 1898b. Mosasaurs. University of Kansas Geological Survey 4, Paleontology, Part I: 83–221.Google Scholar
Williston, S.W., (ed.), 1900. Cretaceous Fishes. University of Kansas Geological Survey 6: Paleontology, Part II: 235–256.Google Scholar
Williston, S.W., 1925. The Osteology of the Reptiles. Harvard University Press (Cambridge, Massachusetts), 300 pp.Google Scholar
Witmer, L.W., 1995. The Extant Phylogenetic Bracket and the importance of reconstructing soft tissues in fossils. In: Thomason, J. (ed.): Functional Morphology in Vertebrate Paleontology. Cambridge University Press (Cambridge): 19–33.Google Scholar
Zaher, H. & Rieppel, O., 1999. Tooth implantation and replacement in squamates, with special reference to mosasaur lizards and snakes. American Museum Novitates 3271: 1–19.Google Scholar