Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-27T14:02:43.650Z Has data issue: false hasContentIssue false

Fluvial architecture of Belgian river systems in contrasting environments: implications for reconstructing the sedimentation history

Published online by Cambridge University Press:  24 March 2014

B. Notebaert*
Affiliation:
Department Earth & Environmental Sciences, KU Leuven, Belgium Research Foundation Flanders – FWO
G. Houbrechts
Affiliation:
Hydrology and Fluvial Geomorphology Research Centre, Department of Geography, University of Liège, Belgium
G. Verstraeten
Affiliation:
Department Earth & Environmental Sciences, KU Leuven, Belgium
N. Broothaerts
Affiliation:
Department Earth & Environmental Sciences, KU Leuven, Belgium
G. Govers
Affiliation:
Department Earth & Environmental Sciences, KU Leuven, Belgium
F. Petit
Affiliation:
Hydrology and Fluvial Geomorphology Research Centre, Department of Geography, University of Liège, Belgium
J. Poesen
Affiliation:
Department Earth & Environmental Sciences, KU Leuven, Belgium

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Accurate dating is necessary to get insight in the temporal variations in sediment deposition in floodplains. The interpretation of such dates is however dependent on the fluvial architecture of the floodplain. In this study we discuss the fluvial architecture of three contrasting Belgian catchments (Dijle, Geul and Amblève catchment) and how this influences the dating possibilities of net floodplain sediment storage. Although vertical aggradation occurred in all three floodplains during the last part of the Holocene, they differ in the importance of lateral accretion and vertical aggradation during the entire Holocene. Holocene floodplain aggradation is the dominant process in the Dijle catchment. Lateral reworking of the floodplain sediments by river meandering was limited to a part of the floodplain, resulting in stacked point bar deposits. The fluvial architecture allows identifying vertical aggradation without erosional hiatuses. Results show that trends in vertical floodplain aggradation in the Dijle catchment are mainly related to land use changes. In the other two catchments, lateral reworking was the dominant process, and channel lag and point bar deposits occur over the entire floodplain width. Here, tracers were used to date the sediment dynamics: lead from metal mining in the Geul and iron slag from ironworks in the Amblève catchment. These methods allow the identification of two or three discrete periods, but their spatial extent and variations is identified in a continuous way. The fluvial architecture and the limitation in dating with tracers hampered the identification of dominant environmental changes for sediment dynamics in both catchments. Dating methods which provide only discrete point information, like radiocarbon or OSL dating, are best suited for fluvial systems which contain continuous aggradation profiles. Spatially more continuous dating methods, e.g. through the use of tracers, allow to reconstruct past surfaces and allow to reconstruct reworked parts of the floodplain. As such they allow a better reconstruction of past sedimentation rates in systems with important lateral reworking.

Type
Research Article
Copyright
Copyright © Stichting Netherlands Journal of Geosciences 2011

References

Bravard, J.P. & Peiry, J.L., 1999. The CM pattern as a tool for the classification of alluvial suites and floodplains along the river continuum. Floodplains: interdisciplinary approaches: 259268.Google Scholar
Bravard, J.-P., Burnouf, J. & Verot, A., 1989, Géomorphologie et archeology dans la region lyonnaise: Questions et réponses d'un dialogue interdisciplinaire. Bulletin de la Société Préhistorique Française 10–12: 429440.Google Scholar
Bronk Ramsey, C., 2001. Development of the radiocarbon calibration program OxCal. Radiocarbon 43: 355363.CrossRefGoogle Scholar
Bronk Ramsey, C., 2009. Bayesian analysis of radiocarbon dates. Radiocarbon 51: 337360.CrossRefGoogle Scholar
Broothaerts, N., 2008, Geomorfologische opbouw van de Dijle vallei. Bachelor thesis, KU Leuven, 62 pp.Google Scholar
Brown, A.G. & Keough, M., 1992. Holocene floodplain metamorphosis in the Midlands, United Kingdom. Geomorphology 4 (6): 433445.CrossRefGoogle Scholar
Brown, A., Petit, F. & James, A., 2003. Archaeology and Human Artefacts. In: Kondolf, M., Piégay, H. (eds): Tools in Fluvial Geomorphology, Wiley, New York: 5975.CrossRefGoogle Scholar
Damblon, F., 1969. Etude palynologique comparée de deux tourbières du plateau des Hautes Fagnes de Belgique: la Fagne Wallonne et la Fagne Clefay. Bulletin du Jardin botanique national de Belgique / Bulletin van de National Plantentuin van België 39: 1745.CrossRefGoogle Scholar
Damblon, F., 1978. Etudes paléo-écologiques de tourbières en haute ardenne. Ministère de l'agriculture, Administration des eaux et forêts. Service de la conservation de la Nature. Traveaux, No. 10.Google Scholar
De Moor, J., 2006. Human impact on Holocene catchment development and fluvial processes – the Geul River catchment, SE Netherlands. PhD thesis, VU Amsterdam: 142 pp.Google Scholar
De Moor, J. & Verstraeten, G., 2008. Alluvial and colluvial sediment storage in the Geul River catchment (the Netherlands) – Combining field and modelling data to construct a Late Holocene sediment budget. Geomorphology 95: 487503. doi:10.1016/j.geomorph.2007.07.012CrossRefGoogle Scholar
De Moor, J.J.W., Kasse, C., Van Balen, R., Vandenberghe, J. & Wallinga, J., 2008. Human and climate impact on catchment development during the Holocene – Geul River, the Netherlands. Geomorphology 98 (3–4): 316339.Google Scholar
De Smedt, P., 1973. Paleogeografie en kwartair-geologie van het confluentiegebied Dijle-Demer. Acta Geographica Lovaniensia 11, 141 pp.Google Scholar
Dejonghe, L., Ladeuze, F. & Jans, D. et al., 1993. Atlas des gisements plombozincifères du Synclinorium de Verviers (Est de la Belgique). Mém. Explic. Cartes Géol. Min. Belgique 33: 1483.Google Scholar
Dotterweich, M., 2008. The history of soil erosion and fluvial deposits in small catchments of central Europe: Deciphering the long-term interaction between humans and the environment – A review. Geomorphology 101: 192208. doi:10.1016/j.geomorph.2008.05.023CrossRefGoogle Scholar
Geurts, M.-A., 1976. Genèse et stratigraphie des travertins de fond de vallée en Belgique. Acta Geographica Lovaniensia 16.Google Scholar
Gullentops, F., Mullenders, W., Schaillee, L., Gilot, E. & Bastin-Servais, Y., 1966. Observations géologiques et palynologiques dans la vallée de la Lienne. Acta Geographica Lovaniensia 4: 192204.Google Scholar
Henrottay, , 1973. La sédimentation de quelques rivières belges au cours des sept derniers siècles. Bulletin de la Sociète Géographique de Liège 9: 101115.Google Scholar
Hoffmann, T., Lang, A. & Dikau, R., 2008. Holocene river activity: analysing 14C-dated fluvial and colluvial sediments from Germany. Quaternary Science Reviews, 27: 20312040. doi:10.1016/j.quascirev.2008.06.014.Google Scholar
Houben, P., 2007. Geomorphological facies reconstruction of Late Quaternary alluvia by the application of fluvial architecture concepts. Geomorphology 86: 94114. doi:10.1016/j.geomorph.2006.08.008CrossRefGoogle Scholar
Houbrechts, G., 2005. Utilisation des macroscories et des microscories en dynamique fluviale: application aux rivières du massif ardennais. PhD thesis, University of Liège, 328 pp.Google Scholar
Houbrechts, G. & Petit, F., 2003. Utilisation des scories métallurgiques en dynamique fluviale: détermination de la compétence effective des rivières et estimation des vitesses de progression de leur charge de fond. Géomorphologie: relief, processus, environnement 2003 No. 1: 312.Google Scholar
Houbrechts, G. & Petit, F., 2004. Etude de la dynamique fluviale des rivières ardennaises grâce aux scories métallurgiques. De la Meuse à l'Ardenne 36: 5768.Google Scholar
Houbrechts, G. & Weber, J.-P., 2007. La sidérurgie proto-industrielle dans le bassin de la Lienne. De la Meuse à l'Ardenne 39: 3563.Google Scholar
Lewin, J. & Macklin, M., 2003. Preservation potential for Late Quaternary river alluvium. Journal of Quaternary Science 18: 107120. Doi: 10.1002/jqs.738CrossRefGoogle Scholar
Macklin, M., Jones, A. & Lewin, J., 2010. River response to rapid Holocene environmental change: evidence and explanation in British catchments. Quaternary Science Reviews 29 (13–14): 15551576. doi:10.1016/j.quascirev.2009.06.010Google Scholar
Miall, A.D., 1985. Architectural-element analysis – a new method of facies analysis applied to fluvial deposits. Earth-Science Reviews 22: 261308. doi:10.1016/0012-8252(85)90001-7Google Scholar
Mols, J., 2004. Dynamique fluviale en réponse aux changements d'affectation du sol des bassins versant de l'Euregio Meuse-Rhin. ULg-LHGF, Mémoire de DEA, 54 pp.Google Scholar
Mullenders, W., & Gullentops, F., 1957. Palynologisch en geologisch onderzoek in de alluviale vlakte van de Dijle te Heverlee-Leuven. Agricultura Band V 2e reeks(1): 5764.Google Scholar
Mullenders, W., Gullentops, F., Lorent, J., Coremans, M. & Gilot, E., 1966. Le Remblement de la vallée de la Nethen. Acta Geographica Lovaniensia IV: 169181.Google Scholar
Nanson, G. & Croke, J., 1992. A genetic classification of floodplains. Geomorphology 4: 459486. doi:10.1016/0169-555X(92)90039-QGoogle Scholar
Notebaert, B., Verstraeten, G., Govers, G. & Poesen, J., 2009a. Qualitative and quantitative applications of LiDAR imagery in fluvial geomorphology. Earth Surface Processes and Landforms 34 (2): 217231. Doi: 10.1002/esp.1705Google Scholar
Notebaert, B., Verstraeten, G., Rommens, T., Vanmontfort, B., Govers, G. & Poesen, J., 2009b. Establishing a Holocene sediment budget for the river Dijle. Catena 77 (2): 150163. doi:10.1016/j.catena.2008.02.001Google Scholar
Notebaert, B., Verstraeten, G., Govers, G. & Poesen, J., 2010. Quantification of alluvial sediment storage in contrasting environments: methodology and error estimation. Catena 82: 169182.CrossRefGoogle Scholar
Notebaert, B., Verstraeten, G., Vandenberghe, D., Marinova, E., Poesen, J. & Govers, G., 2011a. Changing hillslope and fluvial Holocene sediment dynamics in a Belgian loess catchment. Journal of Quaternary Science 26 (1): 4458.Google Scholar
Notebaert, B., Verstraeten, G., Ward, P., Renssen, H. & Van Rompaey, A., 2011b. Modeling the sensitivity of sediment and water runoff dynamics to Holocene climate and land use changes at the catchment scale. Geomorphology 126: 1831.CrossRefGoogle Scholar
Passega, R., 1957. Texture as Characteristic of Clastic Deposition. AAPG Bulletin 41.CrossRefGoogle Scholar
Passega, R., 1964. Grain size representation by CM patterns as a geologic tool. Journal of Sedimentary Research 34 (4): 830847.CrossRefGoogle Scholar
Reimer, P.J., Baillie, M.G.L., Bard, E., Bayliss, A., Beck, J.W., Bertrand, C.J.H., Blackwell, P.G., Buck, C.E., Burr, G.S., Cutler, K.B., Damon, P.E., Edwards, R.L., Fairbanks, R.G., Friedrich, M., Guilderson, T.P., Hogg, A.G., Hughen, K.A., Kromer, B., McCormac, G., Manning, S., Ramsey, C.B., Reimer, R.W., Remmele, S., Southon, J.R., Stuiver, M., Talamo, S., Taylor, F.W., van der Plicht, J. & Weyhenmeyer, C.E., 2004. IntCal04 terrestrial radiocarbon age calibration, 0-26 ka BP. Radiocarbon 46: 10291058.Google Scholar
Rommens, T., 2006. Holocene Sediment Dynamics in a Small River Catchment in Central Belgium, Phd-thesis. K.U. Leuven, Department Geography-Geology, Leuven, Belgium.Google Scholar
Rommens, T., Verstraeten, G., Bogman, P., Peeters, I., Poesen, J., Govers, G., Van Rompaey, A. & Lang, A., 2006. Holocene alluvial sediment storage in a small river catchment in the loess area of central Belgium. Geomorphology 77 (1–2): 187201. doi: 10.1016/j.geomorph.2006.01.028Google Scholar
Stam, M.H., 1999. The dating of fluvial deposits with heavy metals, 210Pb and 137Cs in the Geul catchment (the Netherlands). Physics and Chemistry of the Earth. Part B: Hydrology, Oceans and Atmosphere 24: 155160. doi:10.1016/S1464-1909(98)00028-8Google Scholar
Stam, M.H., 2002. Effects of land-use and precipitation changes on floodplain sedimentation in the nineteenth and twentieth centuries (Geul River, the Netherlands). Special Publications of the International Association of Sedimentologists 32: 251267.Google Scholar
Trimble, S.W., 1999. Decreased rates of alluvial sediment storage in the Coon Creek Basin, Wisconsin, 1975-93. Science 285 (5431): 12441246. Doi: 10.1126/science.285.5431.1244CrossRefGoogle ScholarPubMed
Trimble, S.W., 2009. Fluvial processes, morphology and sediment budgets in the Coon Creek Basin, WI, USA, 1975–1993. Geomorphology 108 (1–2): 823. doi:10.1016/j.geomorph.2006.11.015Google Scholar
Trimble, S.W., 2010. Streams, valleys and floodplains in the sediment cascade. In: Burt, T. & Allison, R. (eds): Sediment cascades. An integrated approach. Wiley-Blackwell, Chichester.Google Scholar
Van Balen, R., Houtgast, R., Van der Wateren, F., Vandenberghe, J. & Bogaart, P., 2000. Sediment budget and tectonic evolution of the Meuse catchment in the Ardennes and the Roer Valley Rift System. Glob. Planet. Change 27: 113129. doi:10.1016/S0921-8181(01)00062-5CrossRefGoogle Scholar
Vandenberghe, J., 1995. Timescales, climate and river development. Quaternary Science Reviews 14 (6): pp. 631638.Google Scholar
Vanwalleghem, T., Bork, H. R., Poesen, J., Dotterweich, M., Schmidtchen, G., Deckers, J., Scheers, S. & Martens, M., 2006. Prehistoric and Roman gullying in the European loess belt: a case study from central Belgium. Holocene 16(3): 393401. doi:10.1191/0959683606hl935rpCrossRefGoogle Scholar
Verstraeten, G., Rommens, T., Peeters, I., Poesen, J., Govers, G. & Lang, A., 2009. A temporarily changing Holocene sediment budget for a loess-covered catchment (central Belgium). Geomorphology 108: 2434. doi:10.1016/j.geomorph.2007.03.022Google Scholar