Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-27T15:11:28.219Z Has data issue: false hasContentIssue false

FT-IR and Raman microscopic study at 293 K and 77 K of celestine, SrS04, from the middle triassic limestone (Muschelkalk) in Winterswijk, The Netherlands

Published online by Cambridge University Press:  01 April 2016

J. Theo Kloprogge*
Affiliation:
Centre for Instrumental and Developmental Chemistry, Faculty of Science, Queensland University of Technology, 2 George Street, GPO Box 2434, Brisbane Q 4001, Australia
Huada Ruan
Affiliation:
Centre for Instrumental and Developmental Chemistry, Faculty of Science, Queensland University of Technology, 2 George Street, GPO Box 2434, Brisbane Q 4001, Australia
Loc V. Duong
Affiliation:
Centre for Instrumental and Developmental Chemistry, Faculty of Science, Queensland University of Technology, 2 George Street, GPO Box 2434, Brisbane Q 4001, Australia Analytical Electron Microscopy Facility, Faculty of Science, Queensland University of Technology, 2 George Street, GPO Box 2434, Brisbane Q 4001, Australia
Ray L. Frost
Affiliation:
Centre for Instrumental and Developmental Chemistry, Faculty of Science, Queensland University of Technology, 2 George Street, GPO Box 2434, Brisbane Q 4001, Australia
*
*Corresponding author: phone +61 7 3864 2184, fax +61 7 3864 1804, E-mailt.kloprogge@qut.edu.au

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

This paper describes the Raman and infrared spectroscopy of SrSO4 or celestine from the Muschelkalk of Winterswijk, The Netherlands. The infrared absorption spectrum is characterised by the SO42-modes V1 at 991 cm-1, v3 at 1201, 1138 and 1091 cm-1, and v4 at 643 and 611 cm-1. An unidentified band is observed at 1248 cm-1. In the Raman spectrum at 293 K the V1 mode is found at 1000 cm-1 and is split in two bands at 1001 and 1003 cm-1 upon cooling to 77 K.The v2 mode, not observed in the infrared spectrum, is observed as a doublet at 460 and 453 cm-1. The v3 mode is represented by four bands in the Raman spectrum at 1187, 1158, 1110 and 1093 cm-1 and the v4 mode as three bands at 656, 638 and 620 cm-1. Cooling to 77 K results in a general decrease in bandwidth and a minor shift in frequencies. A decrease in intensities is observed upon cooling to 77 K due to movement of the Sr atom towards one or more of the oxygen atoms in the sulfate group.

Type
Research Article
Copyright
Copyright © Stichting Netherlands Journal of Geosciences 2001

References

Adler, H.H. & Kerr, P.F. 1965. Variations in IR spectra, molecular symmetry and site symmetry of sulphate minerals. Am. Miner. 50: 132147 Google Scholar
Gadsden, J.A. 1975. Infrared Spectra of Minerals and Related Inorganic Compounds. Butterworth & Co. (Publishers) Ltd., London, 277 ppGoogle Scholar
Griffith, W.P. 1987. Advances in the Raman and Infrared spectroscopy of minerals. In: Spectroscopy of Inorganic-based materials, Clark, R.J.H. and Hester, R.E. (eds.), John Wiley & Sons Ltd., 119186 Google Scholar
Guirguis, L.A. 1987. Infrared vibrational sulphate band shift correlation in alkaline sulphate minerals. TIZ-Fachberichte 111: 339340 Google Scholar
Habers, E.G.F. 1982. Coelestin aus Holland. Parallelfasiger Coelestin als Spaltenfüllung im Muschelkalk. Lapis 10: 24 Google Scholar
Habers, E.G.F. & Tangerding, M. 1975. Coelestienkristallen uit de Muschelkalk van Winterswijk. Grondboor en Hamer 4: 130136 Google Scholar
Kloprogge, J.T. & Frost, R.L. 1999a. Raman microscopy at 77 K of natural gypsum CaSO4.2H2O. J. Mater. Science Letters, 19(3), 229231 CrossRefGoogle Scholar
Kloprogge, J.T. & Frost, R.L. 1999b. Raman microscopy study of basic aluminum sulfate - J. Mater. Science 34: 41994202 Google Scholar
Kloprogge, J.T. & Frost, R.L. 1999c. Raman microscopy study of basic aluminum sulfate. Part II. Raman microscopy at 77 K. J. Mater. Science, 34, 43674374.CrossRefGoogle Scholar
Omori, K. 1986. Infrared diffraction and the far infrared spectra of anhydrous sulfates. Miner. J. 5: 334354 Google Scholar
Oosterink, H.W. 1986. Winterswijk, Geologie deel II. De Trias-periode (geologie, mineralen en fossielen). Wetenschappelijke mededelingen K.N.N.V. 178, 120 ppGoogle Scholar
Peletier, W. & Kolstee, H.G. 1986. Winterswijk, Geologie deel I. Inleiding tot de geologie van Winterswijk. Wetenschappelijke mededelingen K.N.N.V. 175:136 ppGoogle Scholar
Ross, S.D. 1972. Inorganic Infrared and Raman Spectra. McGraw-Hill Book Company (UK) Ltd., London, 414 ppGoogle Scholar
Ross, S.D. 1974. Sulphates and other oxy-anions of group VI. In: The Infrared Spectra of Minerals V.C. Farmer (ed.), Miner. Soc. Monogr. 4: 423444 Google Scholar
Rull, F., Lopez, F., Arana, R., Alia, J., Prieto, A.C. & Acosta, A. 1989. Caracterización de algunas celestinas Españolas por espectroscopia Raman e IR. Bol. Soc. Esp. Miner. 12: 169178.Google Scholar