Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-28T00:26:55.099Z Has data issue: false hasContentIssue false

Inversion structures in Central Europe - Expressions and reasons, an open discussion

Published online by Cambridge University Press:  01 April 2016

F. Kockel*
Affiliation:
Eiermarkt 12 B, D-30938 Burgwedel, Germany

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The diversity of morphological features of Mesozoic inversion structures in NW Germany as representatives of inversion structures in northern Europe is presented and their origin analysed and geologically dated. The particular role of salt in inverted basins and the re-shaping of pre-existing salt structures during the inversion act is demonstrated and the term ‘salt wedge’, a Zechstein salt intrusion into salt layers within the Triassic sedimentary pile, introduced. The leading theories on inversion (continent-continent collision, re-activation Variscan features) are discussed and discarded, but no new comprehensive theory was developed. The impact of inversion on HC prospectivity of sedimentary basins is debated and proposals for future interdisciplinary research are made.

Type
Research Article
Copyright
Copyright © Stichting Netherlands Journal of Geosciences 2003

References

Bachmann, G.H., Müller, M. & Weggen, K., 1987. Evolution of the Molasse Basin (Germany, Switzerland). Tectonophysics 137: 77–92.Google Scholar
Baldschuhn, R., Best, G. & Kockel, F., 1991. Inversion tectonics in the north-west German basin. In: Spencer, A.M. (Ed.) Generation, accumulation and production of Europe’s hydrocarbons. Special Publication of the European Association of Petroleum Geoscientists 1, Oxford University press (Oxford): 149–159.Google Scholar
Baldschuhn, R., Frisch, U. & Kockel, F., 1996. Geotektonischer Atlas von NW-Deutschland 1 : 300 000, part 1–17, Bundesanstalt für Geowissenschaften und Rohstoffe (Hannover): 14 structural contour maps, 4 sheets each, 2 subcrop maps, 4 sheets each, 7 plates with cross-sections.Google Scholar
Baldschuhn, R., Frisch, U. & Kockel, F., 1998. Der Salzkeil, ein strukturelles Requisit der saxonischen Tektonik. Zeitschrift der deutschen geologischen Gesellschaft 149: 59–69.Google Scholar
Baldschuhn, R. & Kockel, F., 1999. Das Osning-Lineament am Südrand des Niedersachsen-Beckens. Zeitschrift der deutschen geologischen Gesellschaft 150: 673–695.Google Scholar
Baldschuhn, R., Binot, F., Fleig, S., & Kockel, F. (Eds), 2001. Geotektonischer Atlas von Nordwest-Deutschland und dem deutschen Nordsee-Sektor - Strukturen, Strukturentwicklung, Paläogeographie. Geologisches Jahrbuch A 153: 1–88, 3 CD ROM.Google Scholar
Best, G. & Zirngast, M., 1998. Analyse der strukturgeologischen Entwicklung der Salzstruktur Oberes Allertal und ihrer Umgebung. Unpublished report BGR, Archive-No. 116 873: 1–108.Google Scholar
Biewald, W. & Franzke, H.J., 2000. Zur Ausbildung der Eichenberg-Saalfelder Störungszone an der Bündelungsstrecke A71/ICE zwischen Behringen und Roda (TK 25 Blatt 5232 Stadtilm). Geowissenschaftliche Mitteilungen von Thüringen 8: 5–31.Google Scholar
Binot, F., Gerling, P., Hiltmann, W., Kockel, F. & Wehner, H., 1993. The Petroleum System in the Lower Saxony Basin. In: Spencer, A.M. (Ed.), Generation, accumulation and production of Europe’s hydrocarbons. Special publication. European Association of Petroleum Geoscientist 3, Springer (Berlin, Heidelberg): 121–139.Google Scholar
Boigk, H., 1968. Gedanken zur Entwicklung des Niedersächsischen Tektogens. Geologisches Jahrbuch 85: 861–900.Google Scholar
Bornemann, O., 1979. Das Gefügeinventar nordwestdeutscher Salzstrukturen in Abhängigkeit von ihrer halokinetischen Stellung. Unpublished PhD. thesis (Braunschweig): 1–119.Google Scholar
Brink, H.-J., 2002. Die Anomalien von Bramsche, wieder eine offene Frage? Erdöl, Erdgas, Kohle 118: 18–22.Google Scholar
Brückner-Röhling, S., Espig, M., Fischer, M., Fleig, S., Forsbach, H., Kockel, F., Krull, P., Stiewe, H. & Wirth, H., 2002. Standsicherheitsnachweise Nachbetriebsphase: Seismische Gefahrdung, Teil 1: Strukturgeologie. Unpublished report Bundesanstalt für Geowissenschaften und Rohstoffe (Hannover).Google Scholar
Buchanan, J.G. & Buchanan, P.G. (Eds), 1995. Basin inversion. Geological Society special publication 88. Geological Society of London (London): 1–596.Google Scholar
Burke, K., 1977. Aulacogens and continental break-up. Annual review of Earth and Planetary science 5: 371–396.Google Scholar
Carlé, W., 1955. Bau und Entwicklung der Südwestdeutschen Großscholle. Beihefte zum Geologischen Jahrbuch 16: 1–272.Google Scholar
Dadlez, R., 2001. Mid-Polish trough - geological cross sections 1 : 200 000. Explanatory note. Polish Geological Institute (Warszawa): 1–29.Google Scholar
Dadlez, R., Jozwiak, W. & Mlynarski, S., 1997. Subsidence and inversion of the western part of the Polish Basin - data from seismic velocities. Geological Quarterly 41: 197–208.Google Scholar
Dadlez, R., Narkiewicz, M., Stephenson, R.A., Visser, M.T.M. & Van Wees, D.-J., 1995. Tectonic evolution of the Mid-Polish trough: modelling implications and significance for central European geology. Tectonophysics 252: 179–195.Google Scholar
DEKORP-Basin Research Group, 1999. Deep crustal structur of the Northeast German basin: New DEKORP BASIN ‘96 deep profiling results. Geology 27: 55–58.Google Scholar
Dyment, J., Sibuet, J.-C. & Pinet, B., 1990. Deep structure in the Celtic Sea: a discussion on the formation of basins. Tectonophysics 173: 435–444.CrossRefGoogle Scholar
Garetsky, R.G., Ludwig, O.A., Schwab, G. & Stackebrandt, W. (Eds), 2001. Neogeodynamics of the Baltic Sea depression and adjacent areas. Results of IGCP project 346. Brandenburgische geowissenschaftliche Beiträge 8: 1–47.Google Scholar
Gerling, P., Kockel, F. & Krull, P., 1999. Das Kohlenwasserstoff-Potential des Präwestfals im norddeutschen Becken - eine Synthese. DGMK Forschungsbericht 433. Deutsche Wissenschaftliche Gesellschaft für Erdöl, Erdgas, und Kohle, E.V. (Hamburg): 1–107.Google Scholar
Gradstein, F. M., Agterberg, F.P., Ogg, I.G., Hardenbol, J. & Backstrom, S., 1999. On the Cretaceous time scale. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen 212: 3–14.Google Scholar
Gras, R. & Geluk, M.C., 1998. Late Cretaceous-Early Tertiary sedimentation in the southern Netherlands. Geologie en Mijnbouw 77: 1–16.Google Scholar
Hänel, R. & Staroste, E. (Eds), 1988. Atlas of geothermal resources in the European Community, Austria and Switzerland. Commission of the European Communities, Hannover: 1–74.Google Scholar
Herrmann, A., Hinze, C. & Stein, V., 1967. Die halokinetische Deutung der Elfas-Überschiebung im südniedersächsischen Bergland. Geologisches Jahrbuch 84: 407–462.Google Scholar
Heybroek, P., 1974. Explanation to tectonic maps of the Netherlands. Geologie en Mijnbouw 53: 43–50.Google Scholar
Heybroek, P., 1975. On the structure of the Dutch part of the Central North Sea Graben. In: Woodland, A.W. (ed.), Petroleum and continental shelf of northwest Europe. Applied Science Publisher (London): 339–351.Google Scholar
Hoffmann, N., Stiewe, H. & Pasternak, G., 1997. Struktur und Genese der Mohorovicic-Diskontinuität (Moho) im Norddeutschen Becken - ein Ergebnis langzeitregistrierter Steilwinkel-Seismik. Zeitschrift für angewandte Geologie 42: 138–148.Google Scholar
Hooper, R.J., Leng Siang, Goh & Dewey, F., 1995. The inversion history of the northeastern margin of the Broad Fourteens Basin. In: Buchanan, J.G. & Buchanan, P.G. (Eds). Basin Inversion. Geological Society special publication 88. Geological Society of London (London): 319–338.Google Scholar
Huyghe, P. & Mugnier, J.-L., 1995. A comparison of inverted basins of Southern North Sea and inverted structures of the external Alps. In: Buchanan, J. G. & Buchanan, P.G. (Eds). Basin Inversion. Geological Society special publication 88 Geological Society of London (London): 339–353.Google Scholar
Karnkowski, P.H., 1999. Origin and evolution of the Polish Rotliegend basin. Polish Geological Institute special papers 3: 1–93.Google Scholar
Koch, J., Kockel, F. & Krull, P., 1997. Coalification at the base Zechstein and the Pre-Permian surface in northern Germany. Geologisches Jahrbuch D 103: 33–42.Google Scholar
Kockel, F., 1998. Salt problems in northwest Germany and the German North Sea sector. Journal of seismic exploration 7: 219–235.Google Scholar
Kockel, F., Wehner, H. & Gerling, P., 1994. Petroleum systems of the Lower Saxony Basin, Germany. In: Magoon, L.B. & Dow, W.G. (Eds). The petroleum system - from source to trap. American Association of Petroleum Geoscientists, Memoirs 60: 573–586.Google Scholar
Koyi, H., 1998. The shaping of salt diapirs. Journal of Structural Geology 20: 321–338.Google Scholar
Lesczynski, K. & Dadlez, R., 1999. Subsidence and the problem of incipient inversion in the Mid-Polish trough based on thickness maps and Cretaceous lithofacies analysis - discussion. Przglad Geologiczny 47: 625–628.Google Scholar
Lokhorst, A., Adlam, K., Brugge, J.V.M., David, P., Diapari, L., Fermont, W.J.J., Geluk, M., Gerling, P., Heckers, J., Kockel, F., Kotarba, M., Laier, T., Lott, G.K., Milaczewski, E., Milaczewski, L., Nicholson, R.A., Von Platen, F. & Pokorski, J., 1998. NW European Gas Atlas - Composition and Isotope Ratios of Natural Gases. CD ROM. NITG (Haarlem). ISBN: 90–72869-60-5Google Scholar
Meyer, W & Stets, J., 1998. Junge Tektonik im Rheinischen Schiefergebirge und ihre Quantifizierung. Zeitschrift der deutschen geologischen Gesellschaft 149: 359–379.Google Scholar
Nachtmann, W. & Wagner, L., 1987. Mesozoic and Early Tertiary evolution of the Alpine foreland in Upper Austria and Salzburg, Austria. Tectonophysics 137: 61–76.Google Scholar
Nalpas, T., 1996. Inversion des grabens du sud de la Mer du Nord - données de sub-surface et modelisation analogique. Mémoires de Géosciences (Rennes) 71: 1–241.Google Scholar
Nalpas, T., Le Douaran, S., Brun, J.-P, Unternehr, P & Richert, J.-P., 1995. Inversion of the Broad Fourteens Basin (Offshore Netherlands), a small scale model investigation. Sedimentary Geology 95: 237–250.CrossRefGoogle Scholar
NITG, 1998. Geological Atlas of the Subsurface of the Netherlands 1 : 250 000, Map Sheet X, Almelo-Winterswijk. NITG (Haarlem): 15 maps.Google Scholar
Pavlov, A.P., 1887. Samarskaja Luka e zeiguli. Trudi geologiceskago komiteta 1887, II, 5: 1–63.Google Scholar
Petmecky, S., Meier, L., Reiser, H. & Littke, R., 1999. High thermal maturity in the Lower Saxony Basin: intrusion or deep burial? Tectonophysics 304: 317–344.Google Scholar
Schatski, N.S., 1961. Vergleichende Tektonik alter Tafeln. Fortschritte der sowjetischen Geologie 4. Akademie-Verlag (Berlin): 7–220.Google Scholar
Schatski, N.S. & Bogdanow, A.A., 1958. Grundzüge des tektonischen Baus der Sowietunion. Erläuterungen zur tektonischen Karte der UdSSR, 1 : 5 Mio. Fortschritte der sowjetischen Geologie 1. Akademie-Verlag (Berlin): 1–84.Google Scholar
Schreiber, A., 1957. Tektonische Stockwerke im Bau des mittleren Emslandes. Zeitschrift der deutschen geologischen Gesellschaft 109: 169–184.Google Scholar
Stille, H., 1917. Injektivfaltung und damit zusammenhängende Erscheinungen. Geologische Rundschau 8: 89–142.Google Scholar
Stille, H., 1923-1925. Die saxonischen Brüche (Schlußwort zu den “Göttinger Beiträgen zur Saxonischen Tektonik” 1923–1925). Abhandlungen der preußischen geologischen Landesanstalt, Neue Folge 95: 149–207.Google Scholar
Stovba, S.M. & Stephenson, R.A., 1999. The Donbas fold belt: its relationships with the un-inverted Donets segment of the Dniepr-Donets basin, Ukraine. Tectonophysics 313: 59–83.Google Scholar
Tollmann, A., 1986. Geologie von Österreich, Band. 3: 1–718.Google Scholar
Trautwein, B., Dunkl, I. & Frisch, W., 2001. Accretionary history of the Rheno-Danubian flysch zone in the Eastern Alps - evidence from apatite fission-track geochronology. International Journal of Earth Sciences, Geologische Rundschau 90: 703–713.Google Scholar
Van Wijhe, D.H., 1987. The structural evolution of the Broad Fourteens Basin. In: Brooks, J. & Glennie, K. (Eds). Petroleum geology of North West Europe. Graham & Trotman (London): 315 — 323.Google Scholar
Vejbæk, O.V. & Andersen, C., 2001. Cretaceous - Palaeogene inversion tectonics in the Danish Central graben. Abstracts of the 63rd EAGE Conference and techhnical exhibition0-29 (Amsterdam): 1–4.Google Scholar
Vinken, R., (ed.), 1988: The NW-European Tertiary Basin. Geologisches Jahrbuch A 100: 1–508.Google Scholar
Voigt, E., 1962a. Über Randtröge vor Schollenrändern und ihre Bedeutung im Gebiet der Mitteleuropäischen Senke und angrenzender Gebiete. Zeitschrift der deutschen geologischen Gesellschaft 114:378–418.Google Scholar
Voigt, E., 1962b: Frühdiagenetische Deformation der turonen Plänerkalke bei Halle/Westfalen als Folge einer Großgleitung unter besonderer Berücksichtigung des Phakoid-Problems. Mitteilungen des geologischen Staatsinstituts Hamburg 31: 146–275.Google Scholar
Voigt, T., 1997: Beckeninversion am Nordostrand der Böhmischen Masse - neue Daten zur mesozoischen Entwicklung Mitteleuropas. In: Büchel, G. & Lützner, H. (Eds): Regionale Geologie von Mitteleuropa. Schriftenreihe der deutschen geologischen Gesellschaft 2: 117–118.Google Scholar
Whittaker, A. (ed.), 1985. Atlas of onshore sedimentary basins in England and Wales. Blackie (Glasgow, London): 1–71.Google Scholar
Wolburg, J., 1954. Schwellen und Becken im Emsland-Tektogen mit einem paläogeographischen Abriß von Wealden und Unterkreide. Beihefte zum Geologischen Jahrbuch 13: 1–115.Google Scholar
Wong, Th.E., Van Doorn, Th.H.M. & Schroot, B., 1989. “Late Jurassic” petroleum geology of the Dutch Central North Sea Graben. Geologische Rundschau 78: 319–336.Google Scholar
Yegorova, T.P., Stephenson, R.A., Kozlenko, V.G., Starostenko, V.I. & Legostaeva, O.V., 1999. 3D gravity analysis of the Dniepr-Donets basin and Donbas foldbelt, Ukraine. Tectonophysics 313:41–58.Google Scholar
Ziegler, P.A., 1987 a. Late Cretaceous and Cenozoic intra-plate compressional deformations in the Alpine forland - a geodynamic model. Tectonophysics 137: 389–420.Google Scholar
Ziegler, P.A. (ed.), 1987 b. Compressional intra-plate deformations in the Alpine forland. Tectonophysics 137: 1–420.Google Scholar
Ziegler, P.A., 1990. Geological Atlas of Western and Central Europe 2nd Edition. Shell Internationale Petroleum Mij. BV and Geological Society of London (London): 1–239.Google Scholar
Ziegler, P.A., Cloetingh, S. & Van Wees, J.-D. 1995. Dynamics of intra-plate compressional deformation: the Alpine forland and other examples. Tectonophysics 252: 7–59.Google Scholar
Ziegler, P.A., Van Wees, J.-D. & Cloetingh, S. 1998. Mechanical controls on collision-related compressional intraplate deformation. Tectonophysics 300: 103–129.Google Scholar
Znosko, J. (Ed.), 1998. Tectonic Atlas of Poland. Polish Geological Institute (Warszawa): 1 map in 4 sheets 1 : 500 000, 8 inset maps.Google Scholar