Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-28T04:04:18.278Z Has data issue: false hasContentIssue false

Late Quaternary tectonic evolution and postseismic near surface fault displacements along the Geleen Fault (Feldbiss Fault Zone–Roer Valley Rift System, the Netherlands), based on trenching

Published online by Cambridge University Press:  01 April 2016

R.F. Houtgast*
Affiliation:
Vrije Universiteit, Faculteit der Aard- en Levens Wetenschappen, de Boelelaan 1085, Amsterdam, Netherlands; e-mail: hour@geo.vu.nl
R.T. van Balen
Affiliation:
Vrije Universiteit, Faculteit der Aard- en Levens Wetenschappen, de Boelelaan 1085, Amsterdam, Netherlands; e-mail: hour@geo.vu.nl
C. Kasse
Affiliation:
Vrije Universiteit, Faculteit der Aard- en Levens Wetenschappen, de Boelelaan 1085, Amsterdam, Netherlands; e-mail: hour@geo.vu.nl
J. Vandenberghe
Affiliation:
Vrije Universiteit, Faculteit der Aard- en Levens Wetenschappen, de Boelelaan 1085, Amsterdam, Netherlands; e-mail: hour@geo.vu.nl
*
1R.F. Houtgast: corresponding author

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In northwest Europe the pattern of earthquake distribution is correlated with known Quaternary faults. Excavation of fault scarps revealed that these fault zones have been active during the Late Pleistocene. In this paper we present the results of an exploratory trenching study across the Geleen Fault, part of the Feldbiss Fault Zone, the Netherlands. Middle Saalian fluvial deposits of the Meuse, overlain by local slope deposits, were excavated. The Geleen Fault has displaced the fluvial deposits by at least 5 meters. The upper layers of local slope deposits could be correlated across the fault and were all dated at approximately 15 ka B.P. This gives the opportunity to reconstruct the sequence of events that occurred about 15 ka ago. Liquefactions provide evidence for an earthquake event. However, the main offset along the Geleen Fault is not stratigraphically related to the liquefactions. The liquefactions and the fault offset are stratigraphically separated by a period of erosion. We therefore propose a sequence of events starting with an earthquake accompanied by liquefaction, followed by a period of postseismic displacement with high rates compared to the long-term average. After this period normal displacement rates occurred, comparable to the long-term average. The duration of the period of high displacement rates could not be determined.

Type
Research Article
Copyright
Copyright © Stichting Netherlands Journal of Geosciences 2003

References

Ahorner, L., 1962. Untersuchungen zur Quartären Bruchtektonik der Niederrheinischen Bucht. Eiszeitalter und Gegenwart 13: 24–105.Google Scholar
Camelbeeck, T., van Eck, T., Pelzing, R., Ahorner, L., Loohuis, J., Haak, H.W., Hoang-Trong, P. & Hollnack, D., 1994. The 1992 Roermond earthquake, the Netherlands, and its aftershocks. Geologie en Mijnbouw 73: 181–197.Google Scholar
Camelbeeck, T. & Meghraoui, M., 1996. Large earthquakes in Northern Europe, more likely than once thought. Eos, Transactions American Geophysical Union 77: 405–409.Google Scholar
Camelbeeck, T. & Meghraoui, M., 1998. Geological and geophysical evidence for large palaeo-earthquakes with surface faulting in the Roer Graben (Northwest Europe). Geophysical Journal International 132: 347–362.Google Scholar
Camelbeeck, T., Alexandre, P., Vanneste, K. & Meghraoui, M., 2000. Long-term seismicity in regions of present day low seismic activity: the example of western Europe. Soil Dynamics and Earthquake Engineering 20: 405–414.Google Scholar
Camelbeeck, T., Martin, H., Vanneste, K., Verbeeck, K. & Meghraoui, M., 2001. Morphometric analysis of active normal faulting in slow-deformation areas; examples of the Lower Rhine Embayment. Netherlands Journal of Geosciences / Geologie en Mijnbouw 80: 95–107.Google Scholar
Commission of the European Communities (ed) 2000. Evaluation of the potential for large earthquakes in regions of present day low seismic activity in Europe. Final report no. ENV4-CT97-0578. Directorate-General XII for Science, research and development (Brussels): 135 pp.Google Scholar
Cowan, D.S., 1999. Do faults preserve a record of seismic slip? A field geologist’s opinion. Journal of Structural Geology 21: 995–1001.Google Scholar
Davenport, C.A., Lap, J.M.J., Maurenbrecher, P.M. & Price, D.G., 1994. Liquefaction potential and dewatering injection features at Herkenbosch: Field investigations of the effects of the Roermond earthquake, the Netherlands. Geologie en Mijnbouw 73: 365–374.Google Scholar
Felder, W.M., Bosch, P.W. & Bisschops, J.H., 1989. Geologische kaart van Zuid-Limburg en omgeving, schaal 1:50.000. Afzettingen van de Maas. Rijks Geologische Dienst, Haarlem.Google Scholar
Frechen, M., Vanneste, K., Verbeeck, K., Paulissen, E. & Camelbeeck, T., 2001. The deposition history of the coversands along the Bree Fault escarpment. Netherlands Journal of Geosciences / Geologie en Mijnbouw 80: 171–185.Google Scholar
French, H.M., 1974. Mass-wasting at Sachs Harbour Banks Island, N.W.T., Canada. Artic and Alpine Research 6: 71–78.Google Scholar
Geluk, M.C., Duin, E.J.Th., Dusar, M., Rijkers, R.H.B., Van den Berg, M.W. & Van Rooijen, P., 1994. Stratigraphy and tectonics of the Roer Valley Graben. Geologie en Mijnbouw 73: 129–141.Google Scholar
Groenewoud, W., Lorenz, G.K., Brouwer, F.J.J. & Molendijk, R.E., 1991. Geodetic determination of recent land subsidence in the Netherlands. In: Land subsidence (Proceedings of the 4th international symposium on land subsidence, may 1991). IAHS Publ. No 200.Google Scholar
Houtgast, G., 1991. Catalogus van aardbevingen in Nederland. KNMI publicatie 179, De Bilt, Netherlands.Google Scholar
Houtgast, R.F. & Van Balen, R.T., 2000. Neotectonics of the Roer Valley Rift System, the Netherlands. Global and Planetary Change 27: 131–146.Google Scholar
Houtgast, R.F., Van Balen, R.T., Bouwer, L.M., Brand, G.B.M. & Brijker, J.M., 2002. Late Quaternary activity of the Feldbiss Fault Zone, Roer Valley Rift System, the Netherlands, based on displaced fluvial terrace fragments. Tectonophysics 352: 295–315.Google Scholar
Huxtable, J. & Aitken, J., 1985. Thermoluminescence dating results for the Palaeolithic site Maastricht-Belvédère. Mededelingen Rijks Geologische Dienst 39-1: 41–44.Google Scholar
Huijzer, A.S., 1993. Cryogenic microfabrics and macrostructures: interrelations, processes and paleoclimatic significance. Thesis Vrije Universiteit Amsterdam. Copyprint Enschede: 245 pp.Google Scholar
Lehmann, K., Klostermann, J. & Pelzing, R., 2001. Paleoseismological investigations at the Rurrand Fault, Lower Rhine Embayment. Netherlands Journal of Geosciences / Geologie en Mijnbouw 80: 139–154.Google Scholar
McCalphin, J.P., 1996. Paleoseismology. Academic Press (San Diego): 588 pp.Google Scholar
Meghraoui, M., Camelbeeck, T. Vanneste, K., Brondeel, M. & Jongmans, D., 2000. Active faulting and paleoseismology along the Bree fault zone, Lower Rhine graben (Belgium). Journal of Geophysical Research 105: 13809–13841.Google Scholar
Mücher, H.J., 1986. Aspects of Loess and loess-derived slope deposits: an experimental and micromorphological approach. Fysisch Geografisch en Bodemkundig Laboratorium, Universiteit van Amsterdam: 267 pp.Google Scholar
Murray, A.S. & Wintle, A.G., 2000. Luminescence dating of quartz using an improved single-aliquot regenerative-dose protocol. Quaternary Ressearch 27: 1–29.Google Scholar
Obermeier, S.F., 1996. Use of liquefaction-induced features for paleoseismic analysis - An overview of how seismic liquefaction features can be distinguished from other features and how their regional distribution and properties of source sediment can be used to infer the location and strength of Holocene paleo-earthquakes. Engineering Geology 44: 1–76.Google Scholar
Paulissen, E., Vandenberghe, J. & Gullentops, F., 1985. The Feldbiss fault in the Maas valley bottom (Limburg, Belgium). Geologie en Mijnbouw 64: 79–87.Google Scholar
Plenefisch, T. & Bonjer, K.-P., 1997. The stress field in the Rhine Graben area inferred from earthquake focal mechanisms and estimation of frictional parameters. Tectonophysics 275: 71–97.Google Scholar
TNO-NITG, 2001. Toelichting bij de kaartbladen XIII en XIV Breda-Valkenswaard en Oss-Roermond. Netherlands Institute for Applied Geosciences TNO, Utrecht.Google Scholar
Vandenberghe, J., 1983. Some periglacial phenomena and their stratigraphical position in Weichselian deposits in the Netherlands. Polarforschung 53 (2): 97–107.Google Scholar
Van den Berg, M.W., 1989. Geomorfologische kaart van Nederland 1:50.000 kaartblad 59 Genk, 60 Sittard, 61 Maastricht, 62 Heerlen, met toelichting (32 p) en de kaart Maasterrassen en hellingklassen. Staring Centrum, Wageningen en Rijks Geologische Dienst, Haarlem.Google Scholar
Van den Berg, M.W., Vanneste, K., Dost, B., Lokhorst, A., van Eijk, M. & Verbeeck, K., 2002. Paleoseismological investigations along the Peel Boundary Fault: geological setting, site selection and trenching results. Netherlands Journal of Geosciences / Geologie en Mijnbouw 81: 39–60.Google Scholar
Van Kolfschoten, T., Roebroeks, W. & Vandenberghe, J., 1993. The Middle and Late Pleistocene sequence at Maastricht-Belvédère: the type locality of the Belvédère Interglacial. Mededelingen Rijks Geologische Dienst N.S. 47: 81–91.Google Scholar
Vanneste, K., Meghraoui, M. & Camelbeeck, T., 1999. Late Quaternary earthquake-related soft-sediment deformation along the Belgian portion of the Feldbiss Fault, Lower Rhine Graben system. Tectonophysics 309: 57–79.Google Scholar
Vanneste, K. & Verbeeck, K., 2001. Paleoseismological analysis of the Rurrand fault near Jülich, Roer Valley Graben, Germany: Coseismic or aseismic faulting history? Netherlands Journal of Geosciences / Geologie en Mijnbouw 80: 155–169.Google Scholar
Zijerveld, L., Stephenson, R., Cloetingh, S., Duin, E. & Van den Berg, M.W., 1992. Subsidence analysis and modelling of the Roer Valley Graben (SE Netherlands). Tectonophysics 208: 159–171.Google Scholar