Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-10T11:27:19.716Z Has data issue: false hasContentIssue false

A new marine varanoid from the Cenomanian of the Middle East

Published online by Cambridge University Press:  01 April 2016

A. Haber*
Affiliation:
Department of Geological Sciences, Southern Methodist University, Dallas, Texas 75275, USA
M.J. Polcyn
Affiliation:
Department of Geological Sciences, Southern Methodist University, Dallas, Texas 75275, USA
*
* Corresponding author. Email: annat@uchicago.edu
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We describe a new marine varanoid, Judeasaurus tchernovi gen. et sp. nov., on the basis of a partial skull recovered from the Middle Cenomanian of the Judean Hills. The new taxon possesses a unique suite of characters exhibited in terrestrial varanoid lizards on the one hand and derived mosasauroids on the other. The characters that relate it to terrestrial varanoid lizards include broad premaxilla, anteriorly depressed maxillae underlying the nasal capsule, extensive postorbitofrontal-parietal contact and vertically oriented parietal rami. Derived mosasauroid characters include a question-mark shaped quadrate, fused frontals, intricate fronto-parietal suture and moderately retracted nares. The shape of the supratemporal and its syndesmotic articulation with the parietal distinguishes the new taxon from any other known specimen. The dentition exhibits elongate and narrow cylindrical roots lacking resorption pits, a condition reminiscent of Coniasaurus, but crowns are small, slightly recurved and conical. Taken together, the new taxon possesses a suite of characters suggesting dolichosaurid affinities.

Type
Research Article
Copyright
Copyright © Stichting Netherlands Journal of Geosciences 2005

References

Arkin, Y., 1976. Geological map of Jerusalem and vicinity 1 : 50,000. Geological Survey of Israel, Jerusalem.Google Scholar
Arkin, Y., Braun, M. & Starinski, A., 1965. Type sections of Cretaceous formations in the Jerusalem-Bet Shemesh area. I. Lithostratigraphy. Stratigraphic Sections, 1. Geological Survey of Israel (Jerusalem): 1–26.Google Scholar
Arkin, Y. & Hamaoui, M., 1967. The Judea group (upper Cretaceous) in central and southern Israel. Bulletin of the Geological Survey of Israel 42: 1–17.Google Scholar
Bahl, K.N., 1937. Skull of Varanus monitor. Records of the Indian Museum 39: 133–174.Google Scholar
Bardet, N.Pereda Suberbiola, X. & Jalil, N.-E., 2003. A new mosasauroid (Squamata) from the Late Cretaceous (Turonian) of Morocco. Comptes Rendus Palevol 2: 607–616.Google Scholar
Bell, B.A., Murry, P.A. & Osten, L.W., 1982. Coniasaurus Owen, 1850 from North America. Journal of Paleontology 56: 520–524.Google Scholar
Bell, G.L. Jr., 1997. A phylogenetic revision of North America and Adriatic Mosasauroidea. In: Callaway, J.M. & Nicholls, E.L. (eds): Ancient marine reptiles. Academic Press (San Diego): 293–332.Google Scholar
Buchbinder, B., Benjamini, C. & Lipson-Benitah, S., 2000. Sequence development of Late Cenomanian-Turonian carbonate ramps, platforms and basins in Israel. Cretaceous Research 21: 813–843.Google Scholar
Caldwell, M.W., 1999. Description and phylogenetic relationships of a new species of Coniasaurus Owen, 1850 (Squamata). Journal of Vertebrate Paleontology 19: 438–455.Google Scholar
Caldwell, M.W., 2000. On the aquatic squamate Dolichosaurus longicollis Owen, 1850, (Cenomanian, Upper Cretaceous), and the evolution of elongate necks in squamates. Journal of Vertebrate Paleontology 20: 720–735.Google Scholar
Caldwell, M.W. & Cooper, J.A., 1999. Redescription, palaeobiogeography and palaeoecology of Coniasaurus crassidens Owen, 1850 (Squamata) from the Lower Chalk (Cretaceous: Cenomanian) of SE England. Zoological Journal of the Linnean Society 127: 423–452.Google Scholar
Caldwell, M.W. & Lee, M.S.Y., 2004. Reevaluation of the Cretaceous marine lizard Acteosaurus crassicostatus Calligaris, 1993. Journal of Paleontology 78: 617–619.Google Scholar
Carroll, R.L., 1997. Mesozoic marine reptiles as models of long-term, large-scale evolutionary phenomena. In: Callaway, J.M. & Nicholls, E.L. (eds): Ancient marine reptiles. Academic Press (San Diego): 467–489.Google Scholar
Carroll, R.L. & DeBraga, M., 1992. Aigialosaurs: mid-Cretaceous varanoid lizards. Journal of Vertebrate Paleontology 12(1): 66–86.Google Scholar
Dal Sasso, C. & Pinna, G., 1997. Aphanizocnemus libanensis n. gen. n. sp., a new dolichosaur (Reptilia, Varanoidea) from the Upper Cretaceous of Lebanon. Paleontologia Lombarda 7: 3–31.Google Scholar
Dal Sasso, C. & Renesto, S., 1999. Aquatic varanoid reptiles from the Cenomanian (Upper Cretaceous) lithographic limestones of Lebanon. Rivista del Museo civico di Scienze naturali ‘E. Caffi’, Bergamo 20: 63–69.Google Scholar
DeBraga, M. & Carroll, R.L., 1993. The origin of mosasaurs as a model of macro-evolutionary patterns and processes. Evolutionary Biology 27: 245–322.Google Scholar
Edmund, A.G., 1969. Dentition. In: Gans, C., Bellairs, A. D’A. & Parsons, T.S. (eds): Biology of the Reptilia. Academic Press (London): 117–200.Google Scholar
Estes, R., de Queiroz, K. & Gauthier, J.A., 1988. Phylogenetic relationships within Squamata. In: Estes, R. & Pregill, G. (eds): Phylogenetic relationships of the lizard families. Stanford University Press (Stanford, California): 119–281.Google Scholar
Frazzetta, T.H., 1962. A functional consideration of cranial kinesis in lizards. Journal of Morphology 111: 287–320.Google Scholar
Gauthier, J.A., Estes, R.De Queiroz, K., 1988. A phylogenetic analysis of Lepidosauromorpha. In: Estes, R. & Pregill, G. (eds): Phylogenetic relationships of the lizard families. Stanford University Press (Stanford, California): 15–98.Google Scholar
Gradstein, F.M., Agterberg, F.P., Ogg, J.G., Hardenbol, J., Van Veer, P., Thierry, J. & Huang, Z., 1995. A Triassic, Jurassic and Cretaceous time scale. In: Berggren, W.A., Kent, D.V., Aubry, M.-P. & Hardenbol, J. (eds): Geochronology, time scales and global stratigraphic correlation. Society of Economic Paleontologists and Mineralogists, Special Publication 54: 95–126.Google Scholar
Hamaoui, M. & Raab, M., 1965. Type sections of Cretaceous formations in the Jerusalem - Bet Shemesh area. II. Biostratigraphy. Geological Survey of Israel (Jerusalem): 27–39.Google Scholar
Hecht, M.K., 1975. The morphology and relationships of the largest known terrestrial lizard, Megalania prisca Owen, from the Pleistocene of Australia. Proceedings of the royal Society of Victoria 87: 239–249.Google Scholar
Holmes, R.B. & Sues, H.-D., 2000. A partial skeleton of the basal mosasaur Halisaurus platyspondylus from the Severn Formation (Upper Cretaceous; Maastrichtian) of Maryland. Journal of Paleontology 74: 309–316.Google Scholar
Lee, M.S.Y., 1997. The phylogeny of varanoid lizards and the affinities of snakes. Philosophical Transactions of the Royal Society of London B352: 53–91.Google Scholar
Lee, M.S.Y. & Caldwell, M.W., 2000. Adriosaurus and the affinities of mosasaurs, dolichosaurs and snakes. Journal of Paleontology 74: 915–937.Google Scholar
Lee, M.S.Y. & Scanlon, J.D., 2002. The Cretaceous marine squamate Mesoleptos and the origin of snakes. Bulletin of the Natural History Museum (Zoology) 68: 131–142.Google Scholar
Lewy, Z., 1989. Correlation of lithostratigraphic units in the upper Judea Group (Late Cenomanian-Late Coniacian). Israel Journal of Earth Sciences 38: 37–43.Google Scholar
Lewy, Z., 1996. The approximate position of the Middle-Upper Cenomanian substage boundary in Israel. Israel Journal of Earth Sciences 45: 193–199.Google Scholar
McDowell, S.B. & Bogert, C.M., 1954. The systematic position of Lanthanotus and the affinities of anguimorphan lizards. Bulletin of the American Museum of Natural History 105: 1–142.Google Scholar
Nopcsa, F., 1903. Ueber die varanusartigen Lacerten Istriens. Beitrage zur Paläontologie und Geologie Oesterreich-Ungarns und des Orients 15: 31–42.Google Scholar
Norell, M.A., McKenna, M.C. & Novacek, M.J., 1992. Estesia mongolensis, a new fossil varanoid from the Late Cretaceous of the Barun Goyot Formation of Mongolia. American Museum Novitates 3045: 1–24.Google Scholar
Pierce, S.E. & Caldwell, M.W., 2004. Redescription and phylogenetic position of the Adriatic (Upper Cretaceous: Cenomanian) dolichosaur Pontosaurus lesinensis Kornhuber, 1873. Journal of Vertebrate Paleontology 24: 373–386.Google Scholar
Polcyn, M.J., Tchernov, E. & Jacobs, L.L., 1999. The Cretaceous biogeography of the eastern Mediterranean with a description of a new basal mosasauroid from ‘Ein Yabrud, Israel. In: Tomida, Y., Rich, T.H. & Vickers-Rich., P. (eds): Proceedings of the Second Gondwanan Dinosaur Symposium. National Science Museum Tokyo, Monographs 15: 259–290.Google Scholar
Polcyn, M.J., Tchernov, E. & Jacobs, L.L., 2003. Haasiasaurus gen. nov., a new generic name for the basal mosasauroid Haasia Polcyn et al., 1999. Journal of Vertebrate Paleontology 23: 476.Google Scholar
Pregill, G., Gauthier, J.A. & Greene, H.W., 1986. The evolution of helodermatid squamates, with description of a new taxon and an overview of Varanoidea. Transactions of the San Diego Society of Natural History 21: 167–202.Google Scholar
Raab, M., 1958. The fishes from the Upper Cenomanian in the Jerusalem area. Hebrew University of Jerusalem (Jerusalem): 58 pp. (unpubl. MSc thesis).Google Scholar
Raab, M. & Chalifa, Y., 1987. A new enchodontid fish genus from the Upper Cenomanian of Jerusalem, Israel. Palaeontology 30: 717–731.Google Scholar
Rieppel, O., 1980. The phylogeny of anguimorph lizards. Denkschriften der schweizerischen naturforschenden Gesellschaft 94: 1–86.Google Scholar
Rieppel, O., Zaher, H., Tchernov, E. & Polcyn, M.J., 2003. The anatomy and relationships of Haasiophis terrasanctus, a fossil snake with well-developed hind limbs from the mid-Cretaceous of the Middle East. Journal of Paleontology 77: 536–558.Google Scholar
Russell, D.A., 1967. Systematics and morphology of American mosasaurs (Reptilia, Sauria). Bulletin of the Peabody Museum of Natural History, Yale University 23: 1–237.Google Scholar
Taitel-Goldman, N., Heller-Kallai, L. & Sass, E., 1995. Clay minerals and feldspars in argillaceous strata of the Judea Group in the Jerusalem Hills. Israel Journal of Earth Sciences 44: 71–79.Google Scholar
Zaher, H. & Rieppel, O., 1999. Tooth implantation and replacement in squamates, with special reference to mosasaur lizards and snakes. American Museum Novitates 3271: 1–19.Google Scholar